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a b s t r a c t

This paper focuses on the control of collective dynamics in large-scale multi-agent systems (MAS)
operating in a 3-D space, with a specific emphasis on compensating for the influence of an unknown
delay affecting the actuated leaders. The communication graph of the agents is defined on a mesh-grid
2-D cylindrical surface. We model the agents’ collective dynamics by a complex- and a real-valued
reaction–advection–diffusion 2-D partial differential equations (PDEs) whose states represent the 3-
D position coordinates of the agents. The leader agents on the boundary suffer unknown actuator
delay due to the cumulative computation and information transmission time. We design a delay-
adaptive controller for the 2-D PDE by using PDE backstepping combined with a Lyapunov functional
method, where the latter is employed to design an update law that generates real-time estimates
of the unknown delay. Capitalizing on our recent result on the control of 1-D parabolic PDEs with
unknown input delay, we use Fourier series expansion to bridge the control of 1-D PDEs to that of
2-D PDEs. To design the update law for the 2-D system, a new target system is defined to establish the
closed-loop local boundedness of the system trajectories in H2 norm and the regulation of the states to
zero assuming a measurement of the spatially distributed plant’s state. We illustrate the performance
of the delay-adaptive controller by numerical simulations.

© 2024 Elsevier Ltd. All rights reserved.
1. Introduction

Cooperative formation control in multi-agent systems (MAS)
as garnered substantial interest due to its wide-ranging ap-
lications in various engineering domains, such as UAV forma-
ion flying (Alonso-Mora, Naegeli, Beardsley, & Beardsley, 2015),
ulti-robot collaboration (Alonso-Mora et al., 2019; Wang, Guo
t al., 2017), vehicle queues (Fax & Murray, 2004), and satellite
lusters (Zetocha et al., 2000). In MASs, communication delay,
temming from information exchange between agents, and input
elays, arising from the processing/acquisition of data to update
eedback control signals, can frequently lead to ‘‘suboptimal’’ per-
ormance and, in more critical cases, potentially result in system
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instability. Over the past few decades, a significant body of re-
search in multi-agent systems focusing on communication delays
has been produced. This research has predominantly employed
high-order models and consensus protocols (Hou, Fu, Zhang, &
Wu, 2017; Yu, Chen, & Cao, 2010). In the context of non-uniform
communication delays, Lee and Spong (2006) establish the critical
role of a globally reachable node in the information graph when
designing linear agreement protocols for agents. The authors
of Tian and Liu (2008) employ frequency domain analysis to
derive a delay-dependent consensus condition for a first-order
multi-agent system with input and communication delays. In Zhu
and Jiang (2015), an event-triggered control is designed to es-
tablish a necessary and sufficient condition for leader-following
consensus in multi-agent systems with input delays. A compa-
rable control scheme for second-order consensus in multi-agent
dynamical systems with input delays is introduced in Yu et al.
(2010). Using the Artstein–Kwon–Pearson reduction method to
convert delay-dependent systems into delay-free systems, fixed-
time event-triggered consensus for linear MAS with input delay is
achieved in Ai and Wang (2021). Based on a Lyapunov method for
a mean square consensus problem of leader-following stochastic
MAS with input time-dependent or constant delay, Tan, Cao, Li,
and Alsaedi (2017) provides sufficient conditions to achieving
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onsensus. A solution for leader–follower consensus in nonlinear
ulti-agent systems with unknown non-uniform time-varying

nput delay is provided in Li, Hua, You, and Guan (2022) by
onstructing a delay-independent output-feedback controller for
ach follower. While the prevalent focus in the literature has
een on the impact of input delay on follower agents, Qi, Wang,
ang, and Diagne (2019) addresses a known delay affecting the
ctuated leaders within a 3-D infinite-dimensional framework.
urthermore, most of these studies rely on ordinary differential
quations (ODEs) models, namely, each agent’s dynamic state is
epresented by an ODE, resulting in increased system complexity
s the number of agents grows (Lee & Spong, 2006; Lin & Ren,
014).
For multi-agent systems, control designs using partial differ-

ntial equations (PDEs) provide a compact representation for cap-
uring the dynamics of large-scale systems. These PDEs, whether
hey take a parabolic or hyperbolic form, describe the position co-
rdinates of individual agents, as demonstrated in various works
ncluding Freudenthaler and Meurer (2020), Frihauf and Krstic
2011), Meurer and Krstic (2011), Qi, Vazquez, and Krstic (2015)
nd Qi, Zhang, and Ding (2018) and the reference therein. In the
ase of parabolic systems, the diffusion term, namely, the Laplace
perator plays the role of MAS consensus protocol modeled by
DEs. Actuation of the leader agents positioned on the periph-
ry of the communication structure demands a greater amount
f information and computational resources compared to the
ollower agents. Consequently, leaders are more susceptible to
elays that affect the formation control. Using the nominal delay-
ompensated boundary control law proposed in Krstic (2009)
nd Wang, Qi and Fang (2017), the authors of Qi et al. (2019)
esigned a boundary feedback law for MAS in 3-D space un-
er a constant and known input delay. However, in practical
cenarios, knowing precisely the value of the delay is often un-
easible, and instead, it is possible to estimate only its upper
nd lower bounds. To overcome such a challenge, the authors
f Liu, Nojavanzadeh, Saberi, Saberi, and Stoorvogel (2021) in-
estigate the determination of the delay bounds within which
egulated state synchronization is attainable for a multi-agent
ystem with unknown and nonuniform input delays. Similarly,
n Zhang, Saberi, and Stoorvogel (2021), such a delay bound is
haracterized for semi-global state synchronization in a multi-
gent system with actuator saturation and unknown nonuniform
nput delays. Nevertheless, there is a dearth of literature that ad-
resses the issue of unknown delays in the context of multi-agent
ystems modeled by partial differential equations (PDEs). For
eaction–diffusion systems subject to unknown boundary input
elays (Wang, Qi, & Diagne, 2021) pioneering exploration led to
delay-adaptive compensated controller that ensures the regula-
ion of the system’s state to zero. Motivated by decontamination
f a polluted surface, Wang, Diagne, and Qi (2022) constructed
delay-adaptive predictor feedback for reaction–diffusion sys-

ems subject to a delayed distributed input. The stabilization of
eep-sea construction vessels using Batch-Least Squares Identi-
iers (Karafyllis, Kontorinaki, & Krstic, 2019) has been achieved
n Wang and Diagne (2023) where finite-time exact identification
f an unknown boundary input delay and simultaneously expo-
ential regulation of the plant’s state for a hyperbolic PDE–ODE
ystem is ensured. More recently, a Lyapunov design approach
hat enables global stability for a hyperbolic PIDE (Partial Integro-
ifferential Equation) with an unknown boundary input delay
as introduced in Wang, Qi and Krstic (2023).
We consider a formation control in 3-D space of a multi-agent

ystem with unknown actuator delay. The collective dynamics
f the Multi-Agent System (MAS) are characterized by two dif-
usion 2-D Partial Differential Equations (PDEs). The first PDE is

omplex-valued, with its states representing the agents’ positions ∆

2

in the coordinates (x, y). The second PDE is real-valued, and its
states correspond to the agents’ positions in the coordinate z.
We utilize a PDE backstepping design in tandem with a Lya-
punov method to formulate a dynamic, delay-adaptive boundary
feedback law. The nominal backstepping controller acquires com-
plementary information about the unknown parameter through
an update law driven by a carefully designed ODE. We intro-
duce a Fourier series expansion to diminish the dimension of
the 2-D system, transforming it into a set of n 1-D systems. In
contrast to the result in Qi et al. (2019), the target system in
the present study accounts for several highly nonlinear terms,
generated by the delay-adaptive scheme, which pose challenges
in establishing the convergence of their series representations, a
crucial prerequisite for transforming the 1-D system into a 2-D
system.

This paper is organized as follows. Section 2 introduces the
PDE-based model for a MAS with actuation delay. Section 3
presents the delay-adaptive control design for the MAS collective
dynamics subject to unknown actuation delay. The main result
including the delay’s adaptation law and the stability theorem
is presented in Section 4. Section 5 gives the proof of the main
result. Simulation results are provided in Section 6. The paper
concludes with a discussion possible of future works in Section 7.

Notation: Throughout the paper, we adopt the following no-
tation:

Ω ={(s, θ ) : 0 < s < 1, − π ≤ θ ≤ π}, (1)

1 ={(s, τ ) : 0 ≤ τ ≤ s ≤ 1}, (2)

2 ={(s, τ ) : 0 ≤ s ≤ 1, 0 ≤ τ ≤ 1}. (3)

or χ : Ω → R, define the L2, H1 and H2 norm as follows Tang,
i, and Zhang (2017) and Qi et al. (2019)

∥χ (s, θ )∥2
L2 :=∥χ∥

2
:=

∫ 1

0

∫ π

−π

|χ (s, θ )|2dθds,

χ (s, θ )∥2
H1 :=∥χ∥

2
+ ∥∂sχ∥

2
+ ∥∂θχ∥

2,

χ (s, θ )∥2
H2 :=∥χ∥

2
H1 + ∥∂2s χ∥

2
+ 2∥∂sθχ∥

2
+ ∥∂2θ χ∥

2.

. Multi-agent’s PDEs model

.1. Model description

Following Qi et al. (2019), we consider a group of agents
ocated on a cylindrical surface undirected topology graph with
ndex (i, j), i = 1, . . . , M, j = 1, . . . ,N , moving in a 3-D
pace under the coordinate axes (x, y, z). A complex-valued state
= x+jy is defined to simplify the expression of the components
n the (x, y) axes. Defining the discrete indexes (i, j) of the agents
nto Ω defined in (1), as M, N → ∞ (see, Fig. 1), the continuum
odel of the collective dynamics of a large scale multi-agent
ystem as follows

∂tu(s, θ, t) =∆u(s, θ, t) + β1∂su(s, θ, t) + λ1u(s, θ, t), (4)

∂tz(s, θ, t) =∆z(s, θ, t) + β2∂sz(s, θ, t) + λ2z(s, θ, t), (5)

(s,−π, t) =u(s, π, t), u(0, θ, t) = f1(θ ), (6)

u(1, θ, t) =g1(θ ) + U(θ, t − D), (7)

z(s,−π, t) =z(s, π, t), z(0, θ, t) = f2(θ ), (8)

z(1, θ, t) =g2(θ ) + Z(θ, t − D), (9)

here (s, θ, t) ∈ Ω × R+, u, λ1, β1 ∈ C, z, λ2, β2 ∈ R. The
oordinates (s, θ ) are the spatial variables denoting the indexes
f the agents in the continuum and ∆ represents the following
aplace operator

2 2
u(s, θ, t) = ∂s u(s, θ, t) + ∂θ u(s, θ, t), (10)
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Fig. 1. Cylindrical surface topology prescribing the communication relationship
among agents. The agents at the uppermost and lowermost layers are leaders.
Each follower has four neighbors.

∆z(s, θ, t) = ∂2s z(s, θ, t) + ∂2θ z(s, θ, t), (11)

which is defined as ‘‘consensus operators’’ for PDE representa-
tions (Ferrari-Trecate, Buffa, & Gati, 2006). Note that the boundary
conditions (6) and (8) are periodical on the cylinder surface (see
Fig. 1) while f1(θ ), g1(θ ), f2(θ ) and g2(θ ) are non-zero bounded
boundary conditions for the states u and z, respectively.

To control the MAS to desired formations, we consider a
configuration where the agents at the boundaries s = 0 and s = 1
are the leaders that drive all the agents to prescribe equilibrium.
In (7) and (9), we defined the input delay D > 0 affecting the
actuated leaders and caused by communication lags in leader–
follower configurations. In practice, the exact value of the delay
is hard to measure, only the bounds of the unknown delay can be
estimated, so we assume:

Assumption 1. Assume the bounds of the delay is known, i.e., D ∈

{D ∈ R+
|D ≤ D ≤ D}, where D and D are the known lower and

pper bounds, respectively.

emark 1. Letting ∂tu(s, θ, t) = 0 and ∂tz(s, θ, t) = 0, one can
solve (4)–(9) in the absence of control, resulting in the steady
state profiles ū(s, θ ) and z̄(s, θ ). These profiles correspond to the
desired formations depending on the values of the parameters
λ1, β1, λ2, β2, and the open-loop boundary conditions f1(θ ), g1(θ ),
2(θ ) and g2(θ ), as discussed in Qi et al. (2019).

3. Delay- adaptive boundary controller

First, define the error between the actual system and the de-
sired system as ũ(s, θ, t) = u(s, θ, t)− ū(s, θ ), and then introduce
a change of variable φ(s, θ, t) = e

1
2 β1sũ(s, θ, t) for removing the

convection term,

∂tφ(s, θ, t) = ∆φ(s, θ, t) + λ′

1φ(s, θ, t), s ∈ (0, 1), (12)

φ(s,−π, t) = φ(s, π, t), φ(0, θ, t) = 0, (13)

φ(1, θ, t) = Φ(θ, t − D), (14)

where λ′

1 = λ1 −
1
4β

2
1 and Φ(θ, t − D) = e

1
2 β1U(θ, t − D).

By employing a transport PDE of ϑ representation of the delay
appearing in (7), we transform the error system (12)–(14) as
follows:

∂tφ(s, θ, t) = ∆φ(s, θ, t) + λ′

1φ(s, θ, t), s ∈ (0, 1), (15)

φ(s,−π, t) = φ(s, π, t), φ(0, θ, t) = 0, (16)

φ(1, θ, t) = ϑ(0, θ, t), (17)

D∂ ϑ(s, θ, t) = ∂ ϑ(s, θ, t), (18)
t s

3

ϑ(s,−π, t) = ϑ(s, π, t), ϑ(1, θ, t) = Φ(θ, t), (19)

where ϑ(s, θ, t) = Φ(θ, t + D(s − 1)), defined in Ω × R+. In
the following, we will derive the dynamic boundary adaptive
controller of the states u and z by employing the Fourier series
expansion but limit our analysis to the u component of the state
as a similar approach applies to the z dynamics.

3.1. Fourier series expansions

In order to transform the 2-D system (15)–(19) into n 1-D
systems, we introduce the Fourier series expansion (Vazquez &
Krstic, 2016) as

φ(s, θ, t) =

∞∑
n=−∞

φn(s, t)ejnθ , (20)

Φ(θ, t) =

∞∑
n=−∞

Φn(t)ejnθ , (21)

ϑ(s, θ, t) =

∞∑
n=−∞

ϑn(s, t)ejnθ , (22)

here φn, Φn, ϑn are the n Fourier coefficients; independent of
he angular argument θ . As an illustration, one of the coefficients
n (20)–(22) is given as φn(s, t) =

1
2π

∫ π
−π
φ(s, ψ, t)e−jnψdψ .

ubstituting (20)–(22) into (15)–(19), we get the following 1-D
DE of the Fourier coefficients φn(s, t) and ϑn(s, t)

tφn(s, t) = ∂2s φn(s, t) + (λ′

1 − n2)φn(s, t), s ∈ (0, 1), (23)

n(0, t) = 0, φn(1, t) = ϑn(0, t), (24)

∂tϑn(s, t) = ∂sϑn(s, t), ϑn(1, t) = Φn(t). (25)

n order to design feedback adaptive controller Φn, we postulate
he following transformations

n(s, t) = Tn[φn](s, t) = φn(s, t) −

∫ s

0
kn(s, τ )φn(τ , t)dτ , (26)

hn(s, t) = Tn[ϑn](s, t) = −D̂(t)
∫ s

0
pn(s, τ , D̂(t))ϑn(τ , t)dτ

+ ϑn(s, t) −

∫ 1

0
γn(s, τ , D̂(t))φn(τ , t)dτ , (27)

hose the inverse transformations are

φn(s, t) = T
−1
n [wn](s, t) = wn(s, t) +

∫ s

0
ln(s, τ )wn(τ , t)dτ , (28)

n(s, t) = T
−1
n [hn](s, t) = D̂(t)

∫ s

0
qn(s, τ , D̂(t))hn(τ , t)dτ

+ hn(s, t) +

∫ 1

0
ηn(s, τ , D̂(t))wn(τ , t)dτ , (29)

here D̂(t) is the estimate of unknown input delay.1 The kernels
n, pn, ln, qn are defined in D1, and γn, ηn are defined in D2, where
1 and D2 are defined in (2) and (3), respectively.
Hence, by PDE Backstepping method, (23)–(25) map into the

ollowing target system parameterized

twn(s, t) = ∂2s wn(s, t) − n2wn(s, t), (30)

n(0, t) = 0, wn(1, t) = hn(0, t), (31)

∂thn(s, t) = ∂shn(s, t) − D̃P1n(s, t) − D ˙̂DP2n(s, t), (32)

n(1, t) = 0, (33)

1 For the sake of simplicity, D̂(t) is defined as D̂ in the remaining part of our
developments.
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here

1n(s, t) =

∫ 1

0

(
−∂τγn(s, 1, D̂)ln(1, τ ) +

1

D̂
∂sγn(s, τ , D̂)

+
1

D̂

∫ 1

τ

∂sγn(s, τ , D̂)ln(ξ, t)dξ
)
wn(τ , t)dτ

− ∂τγn(s, 1, D̂)hn(0, t), (34)

P2n(s, t) =

∫ 1

0

( ∫ 1

τ

∂D̂γn(s, τ , D̂)ln(ξ, τ )dξ + ∂D̂γn(s, τ , D̂)

+

∫ s

0
(pn(s, ξ , D̂) + D̂∂D̂pn(s, ξ , D̂))ηn(ξ, τ , D̂)dξ

)
· wn(τ , t)dτ +

∫ s

0

(
D̂∂D̂pn(s, τ , D̂) + pn(s, τ , D̂)

+ D̂
∫ s

τ

(pn(s, ξ , D̂) + D̂∂D̂pn(s, ξ , D̂))qn(ξ, τ , D̂)dξ
)

· hn(τ , t)dτ , (35)

and D̃ = D−D̂. The mapping (26), (27) is well defined if the kernel
functions kn(s, τ ), γn(s, τ ) and pn(s, τ ) satisfy

∂2s kn(s, τ ) = ∂2τ kn(s, τ ) + λ′

1kn(s, τ ), (36)

kn(s, 0) = 0, kn(s, s) = −
λ′

1

2
s, (37)

sγn(s, τ , D̂) = D̂(∂2τ γn(s, τ , D̂) + (λ′

1 − n2)γn(s, τ , D̂)), (38)

γn(s, 0, D̂) = γn(s, 1, D̂) = 0, γn(0, τ , D̂) = kn(1, τ ), (39)

∂spn(s, τ , D̂) = −∂τpn(s, τ , D̂), (40)

pn(s, 1, D̂) = −∂τγn(s, τ , D̂)|τ=1. (41)

The solution of the above gain kernels PDEs is given by

kn(s, τ ) = −λτ
I1(

√
λ′

1(s2 − τ 2))√
λ′

1(s2 − τ 2)
, (42)

n(s, τ , D̂) = 2
∞∑
i=1

eD̂(λ
′
1−n2−i2π2)ssin(iπτ )

∫ 1

0
sin(iπξ )

· k(1, ξ )dξ, (43)

pn(s, τ , D̂) = −∂2γn(s − τ , 1, D̂), (44)

where ∂2γn(·, ·, ·) denotes the derivative of γn(·, ·, ·) with respect
to the second argument. Similarly, one can get the kernels in
inverse transformations (28), (29):

ln(s, τ ) = −λτ
J1(

√
λ′

1(s2 − τ 2))√
λ′

1(s2 − τ 2)
, (45)

n(s, τ , D̂) = 2
∞∑
i=1

e−D̂(n2+i2π2)ssin(iπτ )
∫ 1

0
sin(iπξ )

· k(1, ξ )dξ, (46)

n(s, τ , D̂) = −∂2ηn(s − τ , 1, D̂). (47)

From (25), (27) and (33), the 1-D delay-compensated adaptive
controller writes

Φn(t) =D̂
∫ 1

0
pn(1, τ , D̂)ϑn(τ , t)dτ

+

∫ 1

0
γn(1, τ , D̂)φn(τ , t)dτ . (48)

3.2. 2-D delay-compensated adaptive controller

In order to obtain the 2-D delay-compensated adaptive con-
troller, we assemble all the n 1-D transformations defined in
 p

4

(26)–(27) in the form of Fourier series to recover the 2-D domain
components and then get

w(s, θ, t)=
∞∑

n=−∞

wn(s, t)ejnθ

= φ(s, θ, t) −

∫ s

0
k(s, τ )φ(τ , θ, t)dτ , (49)

h(s, θ, t)=
∞∑

n=−∞

hn(s, t)ejnθ = ϑ(s, θ, t)

−

∫ 1

0

∫ π

−π

γ (s, τ , θ, ψ, D̂)w(τ , ψ, t)dψdτ

− D̂
∫ s

0

∫ π

−π

p(s, τ , θ, ψ, D̂)ϑ(τ , ψ, t)dψdτ , (50)

here k(s, τ ) is defined in (42), the related 2-D kernels are given
s

(s, τ , θ, ψ, D̂) =2Q (s, θ − ψ, D̂)
∞∑
i=1

eD̂(λ
′
1−i2π2)ssin(iπτ )

·

∫ 1

0
sin(iπξ )k(1, ξ )dξ, (51)

p(s, τ , θ, ψ, D̂) = − ∂2γ (s − τ , 1, θ − ψ, D̂). (52)

or all s ∈ [0, 1], defining Q (s, θ − ψ, D̂) =
1
2π

∑
∞

n=−∞
e−D̂n2s

·ejn(θ−ψ). Due to 0 < Q (s, θ − ψ, D̂) ≤ P(e−D̂s, θ − ψ), where
P denotes Poisson Kernel. Using the properties of Poisson ker-
nels (Brown & Churchill, 2009), one gets the boundedness of the
kernel functions γ (s, τ , θ, ψ, D̂) and p(s, τ , θ, ψ, D̂). In a similar
way, we get the inverse transformations of (49) and (50) are given
by

φ(s, θ, t) = w(s, θ, t) +

∫ s

0
l(s, τ )w(τ , θ, t)dτ , (53)

(s, θ, t) =

∫ 1

0

∫ π

−π

η(s, τ , θ, ψ, D̂)w(τ , ψ, t)dψdτ

h(s, θ, t) + D̂
∫ s

0

∫ π

−π

q(s, τ , θ, ψ, D̂)h(τ , ψ, t)dψdτ , (54)

here the gain kernels l, η and q are defined as

(s, τ ) = −λτ
J1(

√
λ′

1(s2 − τ 2))√
λ′

1(s2 − τ 2)
, (55)

(s, τ , θ, ψ, D̂) = 2Q (s, θ − ψ, D̂)
∞∑
i=1

e−D̂i2π2ssin(iπτ )

·

∫ 1

0
sin(iπξ )l(1, ξ )dξ, (56)

(s, τ , θ, ψ, D̂) = −∂2η(s − τ , 1, θ, ψ, D̂). (57)

From (48), (51) and (52), we obtain the following delay-
daptive control law:

(θ, t) =

∫ 1

0

∫ π

−π

γ (1, τ , θ, ψ, D̂)e−
1
2 β1(1−τ )(u(τ , ψ, t)

− ū(τ , ψ))dψdτ −

∫ t

t−D

∫ π

−π

∂2γ (
t − ν

D̂
, 1, θ, ψ, D̂)e

1
2 β1

· U(ψ, ν)dψdν. (58)

.3. 2-D target system for the plant with unknown input delay

Similarly, in order to obtain the 2-D Target system for the
lant with unknown input delay, we assemble all the n 1-D target
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a
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o
(

ystems defined in (30)–(33) in the form of Fourier series to
eturn back to the 2-D domain

tw(s, θ, t) = ∆w(s, θ, t), (59)

(s,−π, t) = w(s, π, t), (60)

(0, θ, t) = 0, w(1, θ, t) = h(0, θ, t), (61)

D∂th(s, θ, t) = ∂sh(s, θ, t) − D̃P1(s, θ, t) − D ˙̂DP2(s, θ, t), (62)

h(s,−π, t) = h(s, π, t), h(1, θ, t) = 0, (63)

with

P1(s, θ, t) =

∫ 1

0

∫ π

−π

M1(s, τ , θ̂ , ψ, t)w(τ , ψ, t)dψdτ

+

∫ π

−π

M2(s, θ, ψ, t)h(0, ψ, t)dψ, (64)

P2(s, θ, t) =

∫ 1

0

∫ π

−π

M3(s, τ , θ, ψ, t)w(τ , ψ, t)dψdτ

+

∫ s

0

∫ π

−π

M4(s, τ , θ, ψ, t)h(τ , ψ, t)dψτ, (65)

where Mi, i = 1, 2, 3, 4 are functions defined below:

M1(s, τ , θ, ψ, t) =
1

D̂

( ∫ 1

τ

γs(s, ξ , θ, ψ, D̂)l(ξ, τ )dξ

+ γs(s, τ , θ, ψ, D̂)
)

−∂2γ (s, 1, θ, ψ, D̂)l(1, τ ), (66)

2(s, τ , θ, ψ, t) = −∂2γ (s, 1, θ, ψ, D̂), (67)

3(s, τ , θ, ψ, t) =

∫ 1

τ

γD̂(s, ξ , θ, ψ, D̂)l(ξ, τ )dξ

+

∫ s

0

∫ π

−π

(p(s, ξ , θ, ϕ, D̂) + D̂pD̂(s, τ , θ, ϕ, D̂))

· η(ξ, τ , ϕ, ψ, D̂)dϕdξ + γD̂(s, τ , θ, ψ, D̂), (68)

4(s, τ , θ, ψ, t) = p(s, τ , θ, ψ, D̂) + D̂pD̂(s, τ , θ, ψ, D̂)

+ D̂
∫ s

τ

∫ π

−π

(p(s, ξ , θ, ϕ, D̂) + D̂pD̂(s, ξ , θ, ϕ, D̂))

· q(ξ, τ , ϕ, ψ, D̂)dϕdξ . (69)

. The main result

To estimate the unknown parameter D, we construct the fol-
owing update law
˙̂

= ϱProj
[D,D]

{τ (t)}, 0 < ϱ < 1, (70)

here τ (t) is given as

τ (t) = −2
∫ 1

0

∫ π

−π

(1 + s)h(s, θ, t)P1(s, θ, t)dθds, (71)

and the standard projection operator is defined as follows

Proj
[D,D]

{τ (t)} =

⎧⎪⎨⎪⎩
0 D̂ = D and τ (t) < 0,

0 D̂ = D and τ (t) > 0,
τ (t) otherwise.

(72)

ur claim is that the time-delayed multi-agent system studied
n this paper achieves stable formation control, in other words,
he state of the error system (15)–(19) tends to zero under the
ffect of the adaptive controller (58). The following theorem is
stablished.

heorem 1. Consider the closed-loop system consisting of the plant
15)–(19), the control law (58), the updated law (70) under Assump-
ion 1. Local boundedness and regulation of the system trajectories
5

are guaranteed, i.e., there exist positive constants M1, R1 such that
f the initial conditions (φ0, ϑ0, D̂0) satisfy Ψ1(0) < M1, where

Ψ1(t) = ∥φ∥
2
H2 + ∥∂tφ∥

2
H1 + ∥ϑ∥

2
H2 + ∥∂sθθϑ∥

2
+ ∥∂ssθϑ∥

2

+ ∥ϑ(0, ·, t)∥2
+ ∥∂θϑ(0, ·, t)∥2

+ ∥∂2θ ϑ(0, ·, t)∥
2

+ ∥∂tϑ(0, ·, t)∥2
+ ∥∂tθϑ(0, ·, t)∥2

+ D̃2, (73)

the following holds:

Ψ1(t) ≤ R1Ψ1(0), ∀t ≥ 0; (74)

furthermore,

lim
t→∞

max
(s,θ )∈[0,1]×[−π,π ]

|φ(s, θ, t)| = 0, (75)

lim
t→∞

max
(s,θ )∈[0,1]×[−π,π ]

|ϑ(s, θ, t)| = 0. (76)

Remark 2. Only local stability result is obtained due to the
existence of the unbounded boundary input operator combined
with the presence of highly nonlinear terms in the target system
(59)–(63). In comparison to Wang et al. (2021), the need to
ensure continuity of the communication topology of the multi-
agent system in three-dimensional space leads to consider more
complex norms of the system state (see. (73)) for the stability
analysis.

5. Proof of the main result

We introduce the following change of variables

m(s, θ, t) = w(s, θ, t) − sh(0, θ, t), (77)

to create a homogeneous boundary condition of the target system

∂tm(s, θ, t) = ∆m(s, θ, t) + s∂2θ h(0, θ, t) − s∂th(0, θ, t), (78)

m(s,−π, t) = m(s, π, t), m(0, θ, t) = m(1, θ, t) = 0, (79)

D∂th(s, θ, t) = ∂sh(s, θ, t) − D̃P1(s, θ, t) − D ˙̂DP2(s, θ, t), (80)

(s,−π, t) = h(s, π, t), h(1, θ, t) = 0, (81)

ith w(s, θ, t) in Pi(s, θ, t), {i = 1, 2}, is rewritten as m(s, θ, t)+
h(0, θ, t).

We will prove Theorem 1 by

(1) proving the norm equivalence between the target system
(78)–(81) and the error system (15)–(19) through Proposi-
tion 1,

(2) analyzing the local stability of the target system (78)–(81),
and then deriving the stability of the error system based on
norm equivalence’s argument,

(3) and establishing the regulation of the state φ(s, θ, t) and
ϑ(s, θ, t).

1) Norm equivalence
We prove the equivalence between the error system (15)–(19)

nd target system (78)–(81) in the following Proposition.

roposition 1. The following estimates hold between the state
f the error system (15)–(19), and the state of the target system
78)–(81):

∥φ∥
2
H2 + ∥∂tφ∥

2
H1 + ∥ϑ∥

2
H2 + ∥∂sθθϑ∥

2
+ ∥∂ssθϑ∥

2

+ ∥ϑ(0, ·, t)∥2
+ ∥∂θϑ(0, ·, t)∥2

+ ∥∂2θ ϑ(0, ·, t)∥
2

+ ∥∂tϑ(0, ·, t)∥2
+ ∥∂tθϑ(0, ·, t)∥2

≤R1(∥m∥
2
H2 + ∥∂tm∥

2
H1 + ∥h∥2

H2 + ∥∂sθθh∥2
+ ∥∂ssθh∥2

+ ∥h(0, ·, t)∥2
+ ∥∂ h(0, ·, t)∥2

+ ∥∂2h(0, ·, t)∥2

θ θ
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≤

w

s
h

c
w

(

s
s
f

V

T
(
P

V

w

E

E

E

B

w

+ ∥∂th(0, ·, t)∥2
+ ∥∂tθh(0, ·, t)∥2), (82)

(∥m∥
2
H2 + ∥∂tm∥

2
H1 + ∥h∥2

H2 + ∥∂sθθh∥2
+ ∥∂ssθh∥2

+ ∥h(0, ·, t)∥2
+ ∥∂θh(0, ·, t)∥2

+ ∥∂2θ h(0, ·, t)∥
2

+ ∥∂th(0, ·, t)∥2
+ ∥∂tθh(0, ·, t)∥2)

R2(∥φ∥
2
H2 + ∥∂tφ∥

2
H1 + ∥ϑ∥

2
H2 + ∥∂sθθϑ∥

2
+ ∥∂ssθϑ∥

2

+ ∥ϑ(0, ·, t)∥2
+ ∥∂θϑ(0, ·, t)∥2

+ ∥∂2θ ϑ(0, ·, t)∥
2

+ ∥∂tϑ(0, ·, t)∥2
+ ∥∂tθϑ(0, ·, t)∥2), (83)

here Ri, i = 1, 2 are sufficiently large positive constants.

The proof of Proposition 1 is stated in Appendix A of the
upplementary material (Wang, Diagne and Qi, 2023), we omit
ere since the limit of the space.
Next, we show the local stability for the closed-loop system

onsisting of the (φ, ϑ)-system under the control law (58), and
ith the updated law (70)–(71).

2) Local stability analysis
Since the error system (15)–(19) is equivalent to the target

ystem (78)–(81), we establish the local stability of the target
ystem by introducing the following Lyapunov–Krasovskii-type
unction,

1(t) = b1(∥m∥
2
H2 + ∥∂tm∥

2
H1 ) + D

∫ 1

0

∫ π

−π

(1 + s)(|h|2

+ |∂sh|2 + |∂θh|2 + |∆h|2 + |∂sθθh|2 + |∂ssθh|2)dθds

+ b2D(∥h(0, ·, t)∥2
+ ∥∂θh(0, ·, t)∥2

+ ∥∂2θ h(0, ·, t)∥
2

+∥∂th(0, ·, t)∥2
+ ∥∂tθh(0, ·, t)∥2) +

D̃2

2ϱ
. (84)

aking the time derivative of (84), based on (64), (65), (77)–
81), and using Cauchy Schwartz’s inequality, Young’s inequality,
oincare’s inequality, and integration by parts, we obtain that

˙1(t) ≤ −b1

(
3
8

−
1
σ2

−
1
σ3

)
∥m∥

2
− 2b1∥∂θm∥

2

−
b1
2

∥∂sm∥
2
− b1

(
2 −

1
σ1

−
1
σ4

−
1
σ5

)
∥∆m∥

2
− b1

(
3
8

−
1
σ6

−
1
σ7

)
∥∂tm∥

2
−

b1
2

∥∂tsm∥
2
− 2b1∥∂tθm∥

2
− b1(2

− σ1 − σ8 − σ9)∥∆∂tm∥
2
− (∥h∥2

+ ∥∂sh∥2
+ ∥∂θh∥2

+ ∥∆h∥2
+ ∥∂sθθh∥2

+ ∥∂ssθh∥2) − (1 − b2σ10)∥h(0, ·, t)∥2

−

(
1 −

b2
σ10

−
3b2σ13

D
−

b1(σ3 + σ5)
D2

)
∥∂sh(0, ·, t)∥2

−

(
1 −

b2
σ11

)
∥∂θh(0, ·, t)∥2

−

(
1 −

7b2
D3σ13

−
7b1
3D4 (σ7

+
1
σ9

)
)

∥∂2s h(0, ·, t)∥
2
−

(
1 −

b1(σ2 + σ4)
3

−
b2
σ12

)
· ∥∂2θ h(0, ·, t)∥

2
−

(
1 −

7b2
D3σ14

)
∥∂ssθh(0, ·, t)∥2

−

(
2

− b2σ11 −
3b2σ14

D

)
∥∂sθh(0, ·, t)∥2

−

(
1 − σ12b2

−
b1
D2 (σ6 +

1
σ8

)
)

∥∂sθθh(0, ·, t)∥2
− D̃E1(t) − D ˙̂DE2(t)

+ D̃2E3(t) +
˙̂D2E4(t) +

¨̂D2E5(t) −
˙̂D
D̃
ϱ
, (85)

here σi > 0, i = 1, 2, . . . , 14, and

1(t) = 2
∫ 1 ∫ π

(1 + s)(hP1 + ∂sh∂sP1 + ∂θh∂θP1

0 −π

6

+∆h∂2s P1 +∆h∂2θ P1 + ∂sθθh∂sθθP1 + ∂ssθh∂ssθP1)dθds

+ 2b2

∫ π

−π

(h(0, θ, t)P1(0, θ, t) + ∂θh(0, θ, t)∂θP1(0, θ, t)

+ ∂2θ h(0, θ, t)∂
2
θ P1(0, θ, t))dθds, (86)

2(t) = 2
∫ 1

0

∫ π

−π

(1 + s)(hP2 + ∂sh∂sP2 + ∂θh∂θP2

+∆h∂2s P2 +∆h∂2θ P2 + ∂sθθh∂sθθP2 + ∂ssθh∂ssθP2)dθds

+ 2b2

∫ π

−π

(h(0, θ, t)P2(0, θ, t) + ∂θh(0, θ, t)∂θP2(0, θ, t)

+ ∂2θ h(0, θ, t)∂
2
θ P2(0, θ, t))dθds, (87)

E3(t) =

(
b1(σ3 + σ5)

D2 +
3b2σ13

D

)
∥P1(0, ·, t)∥2

+
b1
D2

(
σ6

+
1
σ8

)
∥∂2θ P1(0, ·, t)∥

2
+

3b2σ14
D

∥∂θP1(0, ·, t)∥2

+ 7
(

b1
3D2 (σ7 +

1
σ9

) +
b2
σ14D

) (
1
D2 ∥∂sP1(0, ·, t)∥2

+ ∥∂tP1(0, ·, t)∥2
)

+
7b2
σ15D

(
1
D2 ∥∂sθP1(0, ·, t)∥2

+ ∥∂tθP1(0, ·, t)∥2
)

+4(∥P1(1, ·, t)∥2
+ 2∥∂θP1(1, ·, t)∥2

+ ∥∂2θ P1(1, ·, t)∥
2) + 12(∥∂sP1(1, ·, t)∥2

+ ∥∂sθP1(1, ·, t)∥2

+ D2
∥∂tP1(1, ·, t)∥2

+ D2
∥∂tθP1(1, ·, t)∥2), (88)

4(t) =

(
7b1
3D2 (σ7 +

1
σ9

) +
7b2
Dσ13

)
(∥P1(0, ·, t)∥2

+ ∥∂sP2(0, ·, t)∥2
+ D2

∥∂tP2(0, ·, t)∥2) + b1

(
σ6 +

1
σ8

)
· ∥∂2θ P2(0, ·, t)∥

2
+

7b2
Dσ14

(∥∂θP1(0, ·, t)∥2
+ ∥∂sθP2(0, ·, t)∥2

+ D2
∥∂tθP2(0, ·, t)∥2) + 3b2Dσ14∥∂θP2(0, ·, t)∥2

+ (b1(σ3
+ σ5) + 3b2Dσ13)∥P2(0, ·, t)∥2

+ 4D2(∥P2(1, ·, t)∥2

+ 2∥∂θP2(1, ·, t)∥2
+ ∥∂2θ P2(1, ·, t)∥

2) + 12D2(∥P1(1, ·, t)∥2

+ ∥∂sP2(1, ·, t)∥2
+ ∥∂θP1(1, ·, t)∥2

+ D2
∥∂tP2(1, ·, t)∥2

+ ∥∂sθP2(1, ·, t)∥2
+ D2

∥∂tθP2(1, ·, t)∥2), (89)

E5(t) =

(
7b1
3

(σ7 +
1
σ9

) +
7b2D
σ13

)
∥P2(0, ·, t)∥2

+
7Db2
σ14

· ∥∂θP2(0, ·, t)∥2
+ 12D4(∥P2(1, ·, t)∥2

+ ∥∂θP2(1, ·, t)∥2). (90)

y setting σ1 = 1, σ2 = σ3 = 8, σ4 = σ5 = 3, σ6 = σ7 = 8, σ8 =

σ9 =
1
3 , σ10 = σ11 = σ12 = σ13 = σ14 = 1, 0 < b1 < min{

3
11 ,

D2

11 ,
3D4

77 }, 0 < b2 < min{
2D
3+D

, 3−11b1
3 , D2

−11b1
D2 , D3

7 , D2
−11b1

D(3+2D)
, 3D4

−77b1
3D(D3

+7)
},

we get the following estimate

V̇1(t) ≤ − κ1V2(t) − D̃E1(t) − D ˙̂DE2(t) + D̃2E3(t)

+
˙̂D2E4(t) +

¨̂D2E5(t) −
˙̂D
D̃
ϱ
, (91)

here κ1 = min{
b1
8 , 1 −

11b1
D2 − b2 −

3b2
D } > 0 and

V2(t) =∥m∥
2
H2 + ∥∂tm∥

2
H1 + ∥h∥2

H2 + ∥∂sθθh∥2
+ ∥∂ssθh∥2

+ ∥h(0, ·, t)∥2. (92)

With the help of Agmon’s, Cauchy–Schwarz, and Young’s in-
equalities, one can perform quite long calculations to derive the
following estimates:

E (t) ≤ 11L V (t), E (t) ≤ 11L V (t), (93)
1 1 2 2 1 2
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E

α

α

t

δ

δ

δ

Ψ

∫
a

0

a
a∫
3(t) ≤ (α1 + α2θ
2L21V2(t)2 + D̃2α2)L1V2(t), (94)

E4(t) ≤ (α3 + α4θ
2L21V4(t)2 + D̃2α4)L1V2(t), (95)

E5(t) ≤ α4L1V2(t),
˙̂D(t) ≤ θL1V2(t), (96)

¨̂D(t) ≤ θ (1 + θL1V2(t) + |D̃|)L1V2(t), (97)

where

α1 =
11(13D

2
+ 7)b1

3D4 +
2(10D

2
+ 7)b2

D3 + 24D
2
+ 40, (98)

2 =
77b1
3D2 +

14b2
D

+ 24D
2
, (99)

3 =
11(13D

2
+ 14)b1

3D2 +
4(5D

2
+ 7)b2
D

+ 64D
2
+ 24D

4
, (100)

α4 =
77b1
3

+ 14Db2 + 24D
4
, (101)

and L1 is a sufficiently large positive constant, which estimation
method is similar to the method in Appendix A of the supplemen-
tary material (Wang, Diagne et al., 2023). And then, combining
with (93)–(97), one can get

V̇1(t) ≤ −κ1V2(t) + |D̃|(8 +
1
ϱ
)L1V2(t) + 8DL21V2(t)2

+ D̃2α1L1V2(t) + D̃2(2α2 + 12α4)L31V2(t)3 + D̃4α2L1
· V2(t) + (α3 + 12α4)L31V2(t)3 + 28α4L51V2(t)5. (102)

From (84), it is easy to get D̃2
≤ 2ϱV1(t) − 2ϱζ1V2(t), ζ1 =

min{b1, D, b2D}. Using Cauchy–Schwarz’s and Young’s inequali-
ies, one can deduce that⏐⏐⏐D̃⏐⏐⏐ ≤

ε1

2
+

D̃2

2ε1
≤
ε1

2
+
ϱ

ε1
V1(t) −

ϱζ1

ε1
V2(t). (103)

Again, using (84) we have

ζ1V0(t) ≤ V (t). (104)

Substituting (103), (104) into (102), we derive the following
estimate

V̇1(t) ≤ −

(
κ1

2
− 8ϱ2α2L1V1(t)2

)
V2(t)−

(
κ1

2
− L1(8

+
1
ϱ
)(
ε1

2
+
ϱ

ε1
V1(t)) − 2ϱα1L1V1(t)

)
V2(t) − L1

·

(
ϱζ1

ε1
(8 +

1
ϱ
) − (

(α3 + 12α4)L21
ζ1

+ 8α2ϱ
2ζ 21 )V1(t)

− 8DL1

)
V2(t)2 − 2ϱL1

(
α1ζ1 −

(α2 + 13α4)L21
ζ1

V1(t)2
)

· V2(t)2 − L31

(
2ϱ(α2 + 13α4)ζ1 −

28α4L21
ζ1

V1(t)
)
V2(t)4. (105)

Let ε1 defined as ε1 < min
{

κ1ϱ
L1(8ϱ+1) ,

(8ϱ+1)ζ1
8ϱDL1

}
, to ensure V1(0) ≤

µ1, where

µ1 ≜min
{
ε1(κ1ϱ − (8ϱ + 1)L1ε1)
2ϱL1(8ϱ + 1 + 2α1ϱε1)

,

√
κ1

4ϱ
√
α2L1

,

√
α1ζ1

√
(α2 + 13α4)L1

,
ϱ(α2 + 13α4)ζ1

14α4L21
,

ζ1((8ϱ + 1)ζ1 − 8DL1ε1)
ε1(4ϱ2α2ζ

2
+ (α3 + 12α4)L2)

}
. (106)
1 1

7

Therefore,

V̇1(t) ≤ − (δ1(t) + δ2(t))V2(t) − (δ3(t) + δ4(t))V2(t)2

+ δ5(t)V2(t)4, (107)

where

δ1(t) =
κ1

2
− L1(8 +

1
ϱ
)(
ε1

2
+
ϱ

ε1
V1(t)) − 2ϱα1L1V1(t), (108)

2(t) =
κ1

2
− 4ϱ2α2L1V1(t)2, (109)

3(t) =L1

(
ϱζ1

ε1
(8 +

1
ϱ
) − 8DL1 − (

(α3 + 12α4)L21
ζ1

+ 4ϱ2α2)V1(t)
)
, (110)

4(t) =2ϱL1

(
α1ζ1 −

(α2 + 13α4)L21
ζ1

V1(t)2
)
, (111)

δ5(t) =L31

(
2ϱ(α2 + 13α4)ζ1 −

28α4L21
ζ1

V1(t)
)
, (112)

are nonnegative functions if the initial condition satisfies (106).
Thus, V1(t) ≤ V1(0), ∀t ≥ 0.

Using (82), we can get

1(t) ≤
max{R1, 1}

min{b1, 2D, b2D, 1
2ϱ }

V1(t) ≤ µ2V1(0), (113)

where Ψ1(t) is defined as (73), and µ2 =
max{R1,1}

min{b1, D, b2D,
1
2ϱ }

. Hence,

combining (106) and (113), we have M1 = µ1µ2.
From (83) and (84), one gets

V1(t) ≤ max
{
max{b1, 2D, b2D}R2,

1
2ϱ

}
Ψ1(t). (114)

Knowing that V1(0) ≤ max{max{b1, 2D, b2D}R2,
1
2ϱ }Ψ1(0), we

arrive at (74) with R1 = µ2 max{max{b1, 2D, b2D}R2,
1
2ϱ }, which

proves the local stability of the closed-loop system.
Next, we will prove the regulation of the cascaded system

(φ, ϑ) to complete the proof of Theorem 1.

(3) Regulation of the cascaded system
From (84) and (105), we get the boundedness of all terms in

(92), and then, based on (82), we also get the boundedness of
all terms of Ψ1(t). We will prove (75) and (76) in Theorem 1 by
applying Lemma D.2 (Smyshlyaev & Krstic, 2010) to ensure the
following facts:

• all terms in (92) are square integrable in time,
•

d
dt (∥m∥

2), d
dt (∥h∥

2) and d
dt (∥∂sh∥

2) are bounded.

Knowing that
t

0
∥m(τ )∥2dτ ≤

1
inf0≤τ≤t δ1(τ )

∫ t

0
δ1(τ )V2(τ )dτ , (115)

nd using (108), the following inequality holds:

inf
≤τ≤t

δ1(t) =
κ1

2
− L1(8 +

1
ϱ
)
(
ε1

2
+
ϱ

ε1
V1(t)

)
− 2ϱα1L1V1(t). (116)

Since V̇1 ≤ −(δ1(t)+δ2(t))V2(t)−(δ3(t)+δ4(t))V1(t)2+δ5(t)V2(t)4
nd δi(t) are nonnegative functions, we have V̇1 ≤ −δ1(t)V2(t),
nd integrating it over [0, t] leads to
t

δ1(τ )V2(τ )dτ ≤ V1(0) ≤ µ1. (117)

0
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ubstituting (116) and (117) into (115), we get ∥m∥ is square
ntegrable in time. Similarly, one can establish that other terms
n (92) are square-integrable in time.

To prove that d
dt (∥m∥

2), d
dt (∥h∥

2) and d
dt (∥∂sh∥

2) are bounded,
e define the Lyapunov function

3(t) =
1
2
∥m∥

2
+

b3D
2

∫ 1

0

∫ π

−π

(1 + s)(|h|2 + |∂sh|2)dθds, (118)

where b3 is a positive constant. Taking the derivative of (118)
with respect to time, and using integration by parts and Young’s
inequality, the following holds

V̇3(t) ≤ −∥∂sm∥
2
− b3∥h∥2

− b3∥∂sh∥2
+ (

1
2ι7

+
1
2ι8

)∥m∥
2

+
ι7

6
∥∂θθh∥2

+
ι7

6
∥∂θθsh∥2

+
ι8

2D2 |D̃|
2
∥P1(0, ·, t)∥2

− (
b3
2

−
ι8

2D2 )∥∂sh(0, ·, t)∥
2
+
ι8

2
|
˙̂D|

2
∥P2(0, ·, t)∥2

+ 4b3

· |D̃|
2
∥h∥∥P1∥ + 2b3|D̃|

2
∥P1(1, ·, t)∥2

+ 4b3|D̃|∥h∥∥P1∥

+ 2b3D
2
|
˙̂D|

2
∥P2(1, ·, t)∥2

+ 4b3|D̃|
2
∥∂sh∥∥∂sP1∥

+ 4b3|D̃|∥h∥∥P2∥ + 4b3D|
˙̂D|∥∂sh∥∥∂sP2∥. (119)

etting ι7 = ι8 = 8 and b3 > 4
D2 , we have

V̇3 ≤ −c1V3 + f1(t)V3 + f2(t) < ∞, (120)

where we use Young’s and Agmon’s inequalities, c1 = min{
1
4 ,

1
2D

},
and

f1(t) =
2D̃2

D
(D̃2

+ D
2
|
˙̂D|

2), (121)

f2(t) =
4
3
(∥∂θθh∥2

+ ∥∂θθsh∥2) + 2b3|D̃|
2
∥P1(1, ·, t)∥2

+ 2b3D
2
|
˙̂D|

2
∥P2(1, ·, t)∥2

+
4|D̃|

2

D2 ∥P1(0, ·, t)∥2
+ 4| ˙̂D|

2

· ∥P2(0, ·, t)∥2
+ 2b3|D̃|

2
∥P1(1, ·, t)∥2

+ 2b3∥P1∥2

+ 2b3∥∂sP1∥2
+ 2b3D

2
|
˙̂D|

2
∥P2(1, ·, t)∥2

+ 2b3∥P2∥2

+ 2b3∥∂sP2∥2. (122)

ombining (64) and (65), we get that |
˙̂D|, ∥P1(0, ·, t)∥2, ∥P2(0, ·, t)∥

P1(1, ·, t)∥2, ∥P2(1, ·, t)∥2, ∥P1∥2 and ∥P2∥2 are bounded and in-
egrable. Thereby, f1(t) and f2(t) are bounded and integrable func-
ions of time. Thus, from (120), we deduce that V̇2 ≤ ∞, which
proves the boundedness of d

dt (∥m∥
2), d

dt (∥h∥
2) and d

dt (∥∂sh∥
2).

oreover, by Lemma D.2 (Smyshlyaev & Krstic, 2010), it holds
hat ∥m∥, ∥h∥, ∥∂sh∥ → 0 as t → ∞. Knowing that ∥h(0, ·, t)∥2

≤

2∥h∥∥∂sh∥, so ∥h(0, ·, t)∥2
→ 0 as t → ∞. From (53) and (77),

one can get

∥φ∥
2

≤ 4(1+ ∥l(s, τ )∥2)∥m∥
2
+ 4∥l(s, τ )∥2(∥h∥2

+ ∥∂sh∥2). (123)

So, we get ∥φ∥
2

→ 0 as t → ∞. Since ∥φ∥H2 is bounded, we can
get φ(s, θ, t)2 ≤ C∥φ∥∥φ∥H2 by using Agmon’s inequality, and
then we get φ(s, θ, t) is regulated. Similarly, we can get ϑ(s, θ, t)
is also regulated.

6. Numerical simulations

6.1. Control laws for the leaders and the followers

In order to implement control laws of the followers, we dis-
cretize the PDEs (4) and (5). For u ∈ Ω , we define the following
discretized grid

s = (i − 1)h , θ = (j − 1)h , d = (k − 1)∆D, (124)
i s j θ k

8

for i = 2, . . . ,M − 1, j = 1, . . . ,N , k = 1, . . . ,M ′, where
s =

1
M−1 , hθ =

2π
N−1 and ∆D =

D
M ′−1 . Using a three-point central

difference approximation, the control laws of the follower agents
(i, j) are written as

u̇ij =
(ui+1,j − ui,j) − (ui,j − ui−1,j)

h2
s

+ β1
ui+1,j − ui−1,j

2hs

+
(ui,j+1 − ui,j) − (ui,j−ui,j−1)

h2
θ

+ λ1ui,j, (125)

here i = 2, . . . ,M − 1, j = 1, . . . ,N , and all the state variables
in θ space are 2π periodic, namely, ui,1 = ui,N . The leader agents
with guiding role at the boundary s = 0, namely i = 1 are
formed as u1,j = f1(θj). For the leader agents at the boundary
s = 0, namely i = M , from the discretized form of (58), the state
feedback control action is given by

uM,j(t) =

M∑
m=1

N∑
l=1

am,lγj,m,le−
1
2 β1(1−sm)(um,l(t) − ūm,l(t))

−

M ′∑
k=1

N∑
l=1

a′

k,lγ
′

j,k,luM,l(t − D + dk) + uM,j, (126)

here γj,m,l and γ ′

j,k,l can be discretized from (51) and (52). M , N ,
and M ′ are odd numbers according to Simpson’s rule. The control
laws for the z-coordinate can be obtained in a similar way.

6.2. Simulation results

A formation control simulation example with 51 × 50 agents
on a mesh grid in the 3-D space illustrates the performance of
the proposed control laws with unknown input delay. The real
value of input delay D = 2, and the upper and lower bounds
of the unknown delay are D = 0.1 and D = 4, respectively.
The adaptive gain is fixed at ϱ = 0.05. The model’s parameters
are λ1 = λ2 = 10, β1 = β2 = 0. The control goal is to
drive the formation of the agents from an initial equilibrium
state characterized by the boundary values f1(θ ) = −ejθ + e−j2θ ,
g1(θ ) = ejθ − e−j2θ , f2(θ ) = −1.9, g2(θ ) = 1.9 and the parameters
λ1 = λ2 = 10, β1 = β2 = 0 to a desired formation with
boundary f1(θ ) = g1(θ ) = ejθ , f2(θ ) = 0, g2(θ ) = 1.3 and the
parameters of λ1 = 30, λ2 = 20, β1 = β2 = 1. Fig. 2 shows the
ormation diagram (or snapshots of the evolution in time) of a 3-D
ulti-agent formation with an initial value of the unknown delay
stimate D̂ = 4 and from the initial to the desired formation.
he six snapshots of the formation’s state illustrate the smooth
volution of collective dynamics between two different reference
ormations when the input delays are unknown. Fig. 3 shows
he time-evolution of the control signals, and it is clear that the
ontrol effort tends to zero and ensures the stability of the closed-
oop system dynamic. In Fig. 4, (a) shows the dynamics of the
pdate rate of the unknown parameter, ˙̂D, when its initial value
s D̂(0) = 4. It is clear that the updated rate gradually tends to
ero over time; (b) describes the estimate of the unknown input
elay for the system subject to the designed adaptive control law
or a given initial value D̂(0) = 4: the estimated delay D̂ gradually
converges to the real value D = 2. In Fig. 5, (a) and (b) show
the tracking error of agents indexed by i = 5, i = 15, i = 30,
nd i = 51 (actuator leaders) and the average of all agents on
he horizontal and vertical directions, respectively, under non-
daptive boundary control. It can be seen from the figure that the
racking error gradually tends to 0 with time evolution. Figures
c) and (d) show the L2-norm of average tracking error of all the
gents in the horizontal and vertical directions, respectively. It
an be seen that if the estimate of unknown delay D̂ does not
atch the true value of the delay D = 2, namely if a delay
ismatch occurs, the tracking error diverges.
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Fig. 2. The adaptive formation change process of the multi-agent system with
unknown delay initial value D̂(0) = 4. (a) t = 0 s (b) t = 0.09 s (c) t = 0.2 s
d) t = 2 s (e) t = 4 s (f) t = 40 s.

Fig. 3. Time-evolution of the control signals.

Fig. 4. Delay estimate. (a) Dynamics of the updated law ˙̂D(t) (b) Time-evolution
f the estimate of the unknown parameter D̂(t).

7. Conclusion

This paper studies the formation control of MAS with un-
known input delay in 3-D space via cylindrical topology. To
9

Fig. 5. (a) Tracking error of u system under adaptive control, (b) Observation
error of z system under adaptive control, (c) Average tracking error of u system,
(d) Average tracking error of z system.

achieve the desired 3-D formation with stable transitions, we pro-
pose an adaptive controller with the backstepping method. The
update law for estimating the unknown parameter is designed
using the Lyapunov method. As the dimensionality increases, the
complexity of the problem grows significantly. To address this,
we introduce a Fourier series to transform the PDE describing the
two-dimensional cylindrical communication topology into the
sum of infinite one-dimensional systems. Subsequently, we prove
the local stability of the closed-loop system and the regulation of
the system’s state to zero by a rather intricate Lyapunov function.
In future work, we will extend our research to the systems subject
to both unknown plant coefficients and input delays.
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