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a b s t r a c t

In this paper, we extend recent results on state and boundary parameter estimation in coupled systems
of linear partial differential equations (PDEs) of the hyperbolic type consisting of n rightward and one
leftward convecting equations, to the general casewhich involves an arbitrary number of PDEs convecting
in both directions. Two adaptive observers are derived based on swapping design, where one introduces a
set of filters that can be used to express the system states as linear, static combinations of the filter states
and the unknown parameters. Standard parameter identification laws can then be applied to estimate
the unknown parameters. One observer which requires sensing at both boundaries, generates estimates
of the boundary parameters and system states, while the second observer estimates the parameters from
sensing limited to the boundary anti-collocated with the uncertain parameters. Proof of boundedness of
the adaptive laws is offered, and sufficient conditions ensuring exponential convergence are derived. The
theory is verified in simulations.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Relevant physical systems that can be modeled as hyperbolic
partial differential equations (PDEs) are, tomention a few, heat ex-
changers (Xu & Sallet, 2010), transmission lines (Curró, Fusco, &
Manganaro, 2011), road traffic (Amin, Hante, & Bayen, 2008), oil
wells (Landet, Pavlov, & Aamo, 2013) and multiphase flow (Di-
agne, Diagne, Tang, & Krstić, 2017; Di Meglio, 2011) and time-
delays (Krstić & Smyshlyaev, 2008). These distributed parameter
systems give rise to important estimation and control problems, for
which early results can be found in Coron, Novel, and Bastin (2007),
Greenberg and Tsien (1984) and Litrico and Fromion (2006),
and more recently in Gou and Jin (2015), which deals with the
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boundary disturbance rejection problem for linear wave PDEs
based on the so-called ADRC methodology.

Rigorous designs have recently started to appear based on
the so-called backstepping approach. The key ingredient of
the backstepping technique is the introduction of an invertible
Volterra transformation that maps the original system of PDEs
into a simpler target system whose stability is easier to establish.
Then the invertibility of the backstepping transformation allows to
state the stability properties for the original system from the target
system analysis. The aforementioned framework represents a
major shift for infinite dimensional controller design. Backstepping
applied to infinite dimensional systems was initially developed
for parabolic PDEs (Bosković, Krstić, & Liu, 2001), with the first
version in its infinite-dimensional form presented in Liu (2003).
The method has later been applied to e.g. fluid flows (Aamo,
Smyshlyaev, Krstić, & Foss, 2004), nonlinear parabolic equations
(Vazquez & Krstić, 2008a,b) and for the boundary stabilization
of a one-dimensional wave equation with an internal spatially
varying antidamping term in Smyshlyaev, Cerpa, and Krstić (2010).
The extension to first order hyperbolic PDEs was done in Krstić
and Smyshlyaev (2008), with an expansion to 2 × 2 systems in
Vazquez, Krstić, and Coron (2011) and n + 1 systems in Di Meglio,
Vazquez, and Krstić (2013). In such systems, n PDEs convect in
the same direction, with a single one convecting in the opposite
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direction. The generalm+n case with an arbitrary number of PDEs
convecting in each direction was given in Hu, Di Meglio, Vazquez,
and Krstić (2016), and therefore presented the definitive solution
to the problem of controlling coupled hyperbolic PDEs.

Parabolic PDEs were adaptively stabilized using output feed-
back in Smyshlyaev and Krstić (2007), while a comprehensive set
of solutions for adaptive control of general linear parabolic PDEs
given in Smyshlyaev and Krstić (2010), using both full-state and
output-feedback, and employing three approaches for the design
of parameter estimators and adaptive observer.

The efforts yielding results on adaptive control of general
first-order non-local hyperbolic PDEs were launched in Bernard
and Krstić (2014), where a hyperbolic partial integro-differential
equation was adaptively stabilized using boundary sensing only.
Also, Xu and Liu (2016) consider a subclass of systems considered
in Bernard and Krstić (2014) and present a full-state feedback
solution, with the implementation of the proposed controller
requiring an online computation of the controller gains due to the
time dependency of the adaptive kernel functions.

An adaptive observer for hyperbolic systemswas also derived in
Di Meglio, Bresch-Pietri, and Aarsnes (2014), where additive dis-
turbance terms in the boundary conditions were estimated. The
derived method was applied to a problem from underbalanced
drilling in the oil industry, estimating uncertain parameters. Ad-
ditionally, in Tang and Krstić (2014), backstepping was used in
conjunction with sliding mode control to design an adaptive con-
troller estimating and taking into account an uncertain parameter
in the boundary condition at the same boundary as actuation. We
mention that significant results dealing with observers design for
disturbance rejection in distributed parameter systems were dis-
cussed inAamo (2013), Anfinsen andAamo (2015) andAnfinsen, Di
Meglio, and Aamo (2016) and especially, the leak detection prob-
lem in pipe flows is successfully resolved in Aamo (2016). It is im-
portant to notice that these results can be substantially interpreted
at a fundamental level as adaptive observers for hyperbolic PDEs.

Kreisselmeier filters (K-filters) are often used for both finite
and infinite dimensional systems estimation related problems.
The key feature of using K-filters is to derive a static relationship
between the system states and the unknown parameters. The
static relationship helps to build Lyapunov-based update laws that
ensure the convergence of the unknown parameter estimates. We
mention that this method was later named swapping design and
was more thoroughly investigated in Krstić, Kanellakopoulos, and
Kokotović (1995) for ODEs and extended to PDEs of parabolic type
in Smyshlyaev and Krstić (2010).

1.2. Contribution

In the present work, we investigate the problem of estimating
unknown additive and multiplicative parameters in the boundary
condition of a general system of coupled 1-D first order hyperbolic
PDEs, with an arbitrary number of PDEs convecting in each
direction. Two main estimation problems are solved:

• First off, we estimate both the unknown parameters and the
system states when allowing sensing at both boundaries.

• Secondly, we restrict the sensing to be anti-collocated with the
parameter uncertainty, and generate estimates of the unknown
parameters, as well as estimates of the system states from an
earlier point in time which precedes the real time by a time
interval that corresponds to the fastest of the transport speeds
that separate the boundary where sensing takes place from the
boundary at which the uncertainty is present.

The former of these two problems was independently solved for
the n + 1 case in Anfinsen, Diagne, Aamo, and Krstić (2016) and
Bin and Di Meglio (in press). The non-adaptive version of the latter
problem follows from the results in Hu et al. (2016) using a trans-
formation, and under the assumption of having knownmultiplica-
tive parameters, Aamo (2013) and Anfinsen and Aamo (2015) in-
vestigated the latter problem for 2×2 systems, considering an un-
known (possibly time varying) additive disturbance term entering
at the boundary. Moreover, the observers designed in Aamo (2013)
and Anfinsen and Aamo (2015) allow for the estimation of the sys-
tem states. The same problem is successfully tackled in Di Meglio
et al. (2014) for the general n+1 system. One shall mention the re-
cent contribution (Anfinsen, Di Meglio et al., 2016) which achieved
the estimation of bothmultiplicative and additive disturbances for
the n + 1 case using a swapping design based observer with sens-
ing restricted to be anti-collocated with the unknown parameters,
and also producing estimates of the system states from an earlier
point in time which precedes the real time by a time interval that
corresponds to the fastest of the transport speeds that separate the
boundary where sensing takes place from the boundary at which
the uncertainty is present. Our contribution is the extension of the
results in Anfinsen, Diagne et al. (2016) and Anfinsen, Di Meglio
et al. (2016) to the generalm + n case.

1.3. Organization

This paper is organized as follows: in Section 2 we present the
dynamical systems and state the two different estimation prob-
lems to be investigated. The first problem concerning estimation
of unknown parameters in one boundary condition, as well as es-
timating the system states is solved in Section 3. In Section 4,
we propose a solution to the second problem concerning estima-
tion of boundary condition parameters from sensing restricted to
be anti-collocated from the uncertain parameters. Demonstrations
through simulations are offered in Section 5,with some concluding
remarks given in Section 6.

2. Problem statements

We consider the system described by the following linear
hyperbolic PDEs

ut(x, t) + Λ+ux(x, t) = Σ++u(x, t) + Σ+−v(x, t) (1)

vt(x, t) − Λ−vx(x, t) = Σ−+u(x, t) + Σ−−v(x, t) (2)
u(0, t) = Q0v(0, t) + d (3)
v(1, t) = C1u(1, t) + U(t) (4)

where

u(x, t) =

u1(x, t) u2(x, t) · · · un(x, t)

T (5)

v(x, t) =

v1(x, t) v2(x, t) · · · vm(x, t)

T (6)

are the systems states, and

Λ+
= diag {λ1, λ2, . . . , λn} (7)

Λ−
= diag {µ1, µ2, . . . , µm} (8)

are the transport speeds, subject to the restriction

− µ1 < · · · < −µm < 0 < λ1 < λ2 < · · · < λn. (9)

The in-domain parameters are given as

Σ++
= {σ++

ij }1≤i≤n,1≤j≤n (10)

Σ+−
= {σ+−

ij }1≤i≤n,1≤j≤m (11)

Σ−+
= {σ−+

ij }1≤i≤m,1≤j≤n (12)

Σ−−
= {σ−−

ij }1≤i≤m,1≤j≤m (13)
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Fig. 1. System structure of ui (blue) and v (green) with internal couplings (orange), boundary conditions at x = 0 (red) and boundary conditions at x = 1 (black). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: The idea for this figure is taken from Di Meglio et al. (2013).
and boundary parameters at x = 1 are given as

C1 = {cij}1≤i≤m,1≤j≤n. (14)

Furthermore, the unknown boundary parameters at x = 0 are

Q0 = {qij}1≤i≤n,1≤j≤m =

q1 q2 · · · qm


(15)

d =

d1 · · · dn

T
. (16)

The initial conditions satisfy, for i = 1 . . . n, j = 1 . . .m

u0
i , v0

j ∈ L2([0, 1]). (17)

The termU(t) in (4) can be considered as a boundary control input,
although closed-loop control is not investigated in the present
work. A schematic of the structure of the system is depicted in
Fig. 1.

We shall investigate the following estimation and identification
problems;

Problem 1. Estimate the states of the system (1)–(4) andunknown
parameters Q0 and d in the boundary condition (3) assuming the
only available measurements are

y(t) = u(1, t) (18)
ϑ(t) = A0u(0, t) + B0v(0, t) (19)

where A0 ∈ Rm×n and B0 ∈ Rm×m are assumed to bematrices with
known coefficients.

Problem 2. Estimate the unknown parameters Q0 and d in the
boundary condition (3) assuming the only available measurement
is

y(t) = u(1, t). (20)

Remark 3. While the method extends to spatially varying coeffi-
cients in (1)–(2),we consider here constant coefficients for the sake
of readability.

Remark 4. We assume

σ−−

ii = 0, for i = 1 . . .m, (21)

that is, there are no internal source terms for the v’s. Such source
terms can be removed by a transformation, yielding spatially
varying coefficients. This is not an issue, however, in light of
Remark 3.
3. Sensing at both boundaries

3.1. Problem statement

This section deals with the first stated estimation problem in
which sensing at both boundaries is required, namely, Problem 1.
The proposed estimation algorithm involves designing a set of
filters which allows to express the system states u and v of (1)–
(4) as static, linear combinations of the filters and the unknown
parameters Q0 and d. Any standard adaptive update law can then
be used to estimate the unknown parameters. A similar procedure
was done for the n + 1 case in Anfinsen, Diagne et al. (2016).

3.2. Filter design

We introduce the input filters

at(x, t) + Λ+ax(x, t) = Σ++a(x, t) + Σ+−b(x, t)
+ K1(x)(y(t) − a(1, t)) (22)

bt(x, t) − Λ−bx(x, t) = Σ−+a(x, t) + Σ−−b(x, t)
+ K2(x)(y(t) − a(1, t)) (23)

with boundary conditions

a(0, t) = 0 (24)
b(1, t) = C1y(t) + U(t) (25)

where

a(x, t) =

a1(x, t) · · · an(x, t)

T (26)

b(x, t) =

b1(x, t) · · · bm(x, t)

T (27)

and the injection gains K1(x) and K2(x) are to be designed later.
These filters model how the input signal, namely C1y(t) + U(t)
affects the system states u and v.

Furthermore,wedesignparameter filters that are used tomodel
how the parameters Q0 and d influence the system states u and v.
We define

Pt(x, t) + Λ+Px(x, t) = Σ++P(x, t) + Σ+−R(x, t)
− K1(x)P(1, t) (28)

Rt(x, t) − Λ−Rx(x, t) = Σ−+P(x, t) + Σ−−R(x, t)
− K2(x)P(1, t) (29)

with boundary conditions

P(0, t) = ϑT (t) ⊗ In×n (30)
R(1, t) = 0 (31)
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where ⊗ denotes the Kronecker product, and

P(x, t) = {pij(x, t)}1≤i≤n,1≤j≤mn (32)
R(x, t) = {rij(x, t)}1≤i≤m,1≤j≤mn. (33)

Lastly, we define

Wt(x, t) + Λ+Wx(x, t) = Σ++W (x, t) + Σ+−Z(x, t)
− K1(x)W (1, t) (34)

Zt(x, t) − Λ−Z(x, t) = Σ−+W (x, t) + Σ−−Z(x, t)
− K2(x)W (1, t) (35)

with boundary conditions

W (0, t) = In×n (36)
Z(1, t) = 0 (37)

where

W (x, t) = {wij(x, t)}1≤i≤n,1≤j≤n (38)
Z(x, t) = {zij(x, t)}1≤i≤m,1≤j≤n. (39)

3.3. Relationship to the system states

Based on the filters introduced above, we derive static
relationships to the system states. From inserting the boundary
condition (3) into the measurement (19)

ϑ(t) = (A0Q0 + B0)v(0, t) + A0d, (40)

it is evident that we cannot estimate the unknown parameters Q0
and d directly. Instead, we estimate the following parameters

Θ =

θ1 θ2 · · · θm


, κ (41)

which are related to the original parameters Q0 and d through

Θ(A0Q0 + B0) = Q0 (42)
(I − ΘA0)d = κ. (43)

Consider the relations

u(x, t) = a(x, t) + P(x, t)θ + W (x, t)κ + e(x, t) (44)
v(x, t) = b(x, t) + R(x, t)θ + Z(x, t)κ + ϵ(x, t) (45)

where the vector θ contains all the elements of the matrix Θ ,
stacked column-wise

θ :=

θ T
1 θ T

2 · · · θ T
m

T
. (46)

The following lemma holds.

Lemma 5. The error terms e and ϵ in (44)–(45) have the following
dynamics

et(x, t) + Λ+ex(x, t) = Σ++e(x, t) + Σ+−ϵ(x, t)
− K1(x)e(1, t) (47)

ϵt(x, t) − Λ−ϵx(x, t) = Σ−+e(x, t) + Σ−−ϵ(x, t)
− K2(x)e(1, t) (48)

with boundary conditions

e(0, t) = 0 (49)
ϵ(1, t) = 0. (50)

Proof. The dynamics (47)–(48) follows directly from differentiat-
ing (44)–(45) with respect to time and inserting (1)–(2), (22)–(23),
(28)–(29) and (34)–(35). From (44), we find

e(0, t) = u(0, t) − a(0, t) − P(0, t)θ − W (0, t)κ
= Q0v(0, t) + d − Θϑ(t) − In×nκ. (51)
Fig. 2. Structure of the filter system, and their connection to the system states
ui(x, t) (blue) andvj(x, t) (green). Only one of each state is displayed, and arguments
are omitted to ease readability. This figure was inspired by a similar figure in
Anfinsen, Diagne et al. (2016). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Inserting (40), we obtain

e(0, t) = (Q0 − Θ(A0Q0 + B0)) v(0, t)
+ (In×n − ΘA0) d − κ. (52)

Using (42)–(43), we find (49). Lastly, from (45), we find

ϵ(1, t) = v(1, t) − b(1, t) − R(1, t)θ − Z(1, t)κ
= C1u(1, t) + U(t) − C1y(t) − U(t) (53)

which yields (50) when inserting (18). �

Provided the terms (e, ϵ) go to zero, relations (44)–(45) are
static representations of the system states u, v from the filters
and unknown parameters θ and κ , which are unique combinations
of the boundary parameters Q0 and d. A schematic of this
representation is depicted in Fig. 2.

3.4. Backstepping and target system

Now, using an extended version of the backstepping transfor-
mation from Bin and DiMeglio (in press), we show that by a partic-
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ular choice of the injection terms K1(x) and K2(x), the errors e(x, t)
and ϵ(x, t) in (44)–(45) go to zero in finite time.

Lemma 6. The backstepping transformation

α(x, t) = e(x, t) −

 1

x
M(x, ξ)α(ξ, t)dξ (54)

β(x, t) = ϵ(x, t) −

 1

x
N(x, ξ)α(ξ, t)dξ (55)

where

M(x, ξ) =

Mij(x, ξ)


1≤i,j≤n (56)

N(x, ξ) =

Nij(x, ξ)


1≤i≤n,1≤j≤m (57)

are defined over the triangular domain

T = {(x, ξ) | 0 ≤ x ≤ ξ ≤ 1} (58)

and satisfy the PDEs in Appendix A.1, transforms the error system
(47)–(50) into the target system

αt(x, t) + Λ+αx(x, t) = Σ̄++α(x, t) + Σ+−β(x, t)

−

 1

x
D+(x, ξ)β(ξ, t)dξ (59)

βt(x, t) − Λ−βx(x, t) = Σ−−β(x, t)

−

 1

x
D−(x, ξ)β(ξ, t)dξ (60)

with boundary conditions

α(0, t) =

 1

0
H(ξ)α(ξ, t)dξ (61)

β(1, t) = 0 (62)

where the injection gains are set to

K1(x) = M(x, 1)Λ+ (63)

K2(x) = N(x, 1)Λ+, (64)

the coefficients D+(x, ξ) and D−(x, ξ) are

D+(x, ξ) = M(x, ξ)Σ+−
−

 x

ξ

M(x, η)D+(η, ξ)dη (65)

D−(x, ξ) = N(x, ξ)Σ+−
−

 x

ξ

N(x, η)D+(η, ξ)dη (66)

with Σ̄++ defined as a diagonal matrix

Σ̄++
= diag{σ++

11 , σ++

22 , . . . , σ++

nn } (67)

and H(x) =

hij(x)


1≤i,j≤n as a strict lower triangular matrix with

components

hij(x) =


−Mij(0, ξ) for 1 ≤ j < i ≤ n
0 otherwise. (68)

Proof. Differentiating (54) with respect to time, we obtain

et(x, t) = αt(x, t) +

 1

x
M(x, ξ)αt(ξ , t)dξ . (69)

Inserting the α-dynamics (59), using integration by parts and
changing the order of integration in the double integral terms, we
derive

et(x, t) = αt(x, t) − M(x, 1)Λ+α(1, t) + M(x, x)Λ+α(x, t)
+

 1

x
Mξ (x, ξ)Λ+α(ξ, t)dξ

+

 1

x
M(x, ξ)Σ̄++α(ξ, t)dξ

+

 1

x
M(x, ξ)Σ+−β(ξ, t)dξ

−

 1

x

 x

ξ

M(x, η)D+(η, ξ)dηβ(ξ, t)dξ . (70)

Next, differentiating (54)with respect to space using Leibniz’s rule,
we arrive at

ex(x, t) = αx(x, t) − M(x, x)α(x, t) +

 1

x
Mx(x, ξ)α(α, t)dξ .

(71)

Substituting (70)–(71) into (47) and using (54)–(55), we obtain

α̃t(x, t) + Λ+α̃x(x, t)

= Σ+−β̃(x, t)

−

 1

x


Mξ (x, ξ)Λ+

+ M(x, ξ)Σ̄++
+ Λ+Mx(x, ξ)

− Σ++M(x, ξ) − Σ+−N(x, ξ)

α̃(ξ , t)dξ

−

K1(x) − M(x, 1)Λ+


α̃(1, t) −

 1

x


M(x, ξ)Σ+−

−

 x

ξ

M(x, η)D+(η, ξ)dη


β̃(ξ , t)dξ

+

Λ+M(x, x) − M(x, x)Λ+

+ Σ++

α̃(x, t). (72)

Using (63), (65), (A.1) and (A.3), Eq. (59) is deduced. Similar
derivations for (55), using (48) and (59) yield

β̃t(x, t) − Λ−β̃x(x, t)

= Σ−−β̃(x, t)

+

 1

x


Λ−Nx(x, ξ) − Nξ (x, ξ)Λ+

+ Σ−+M(x, ξ)

+ Σ−−N(x, ξ) − N(x, ξ)Σ̄++

α̃(ξ , t)dξ

−

 1

x


N(x, ξ)Σ+−

−

 x

ξ

N(x, η)D+(η, ξ)dη


β̃(ξ , t)dξ

−

Λ−N(x, x) + N(x, x)Λ+

− Σ−+

α̃(x, t)

+

N(x, 1)Λ+

− K2(x)

. (73)

Finally, using (A.2), (A.4), (64) and (66), one can derive (60) and
substituting (54) into (49), from the definition of H(ξ) stated in
(68), we derive the first boundary condition (61). The last boundary
condition (62) follows directly from evaluating (55) at x = 1 and
using (50). �

3.5. Stability of the target system

Recall that since the backstepping transformation in Lemma 6
is invertible, the stability properties of the error system (47)–(50)
and the target system (59)–(62) are equivalent. Stabilizing (59)–
(62) will thus result in stabilizing (47)–(50).

Lemma 7. The target system (59)–(62) tends to zero in a finite time
given by

tF = µ−1
1 +

n
k=1

λ−1
k . (74)
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Proof. We argue in a similar way as in Hu et al. (2016). The
components of Eq. (60), for i = 1 . . .m are given by

∂tβi(x, t) − µi∂xβi(x, t) =

m
k=1

σ−−

ik βk(x, t)

−

m
k=1

 1

x
d−

ik(x, ξ)βk(ξ , t)dξ (75)

with boundary conditions

βi(1, t) = 0, (76)

where dij(x, ξ) are the components of D−(x, ξ). Equations
(75)–(76) constitute m transport equations with a zero boundary
condition that will all be zero when the slowest one, β1 has
propagated its boundary condition to x = 1. Thus, after

t = t0 = µ−1
1 (77)

one obtains

βi(x, t) ≡ 0, i = 1 . . .m. (78)

Hence, for t > t0, the target system (59)–(62) is reduced to

αt(x, t) + Λ+αx(x, t) = Σ̄++α(x, t) (79)

α(0, t) =

 1

0
H(ξ)α(ξ, t)dξ (80)

or to the following, when written out in its components, for i =

1 . . . n

∂tαi(x, t) + λi∂xαi(x, t) = σ++

ii αi(x, t) (81)

αi(0, t) =

i−1
k=1

hik(ξ)αk(ξ , t)dξ (82)

which is a cascade structure. For i = 1 we have

∂tα1(x, t) + λ1∂xα1(x, t) = σ++

11 α1(x, t) (83)
α1(0, t) = 0, (84)

which is exactly equal to zero after a total time of t = t0 + λ−1
1 .

Consequently, the second component of (79)–(80) is then

∂tα2(x, t) + λ2∂xα2(x, t) = σ++

22 α2(x, t) (85)
α2(0, t) = 0 (86)

which is zero after a total time of t = t0 + λ−1
1 + λ−1

2 . Considering
the same procedure for i = 3 . . . n, we deduce by induction that
the total system is zero after the time given by (74). �

3.6. Update law and state estimates

From the static form (44)–(45) with error terms converging to
zero, one can follow the same approach as in Anfinsen, Diagne et al.
(2016) and use standard gradient and least squares update laws
to estimate the parameters in θ and κ . From (44), we deduce the
following relation

e(1, t) = u(1, t) − a(1, t) − P(1, t)θ − W (1, t)κ
= y(t) − a(1, t) − P(1, t)θ − W (1, t)κ. (87)

Next, we define the following vector

φ(t) := y(t) − a(1, t) (88)

and the matrix

Φ(t) =

P(1, t) W (1, t)


. (89)
Then, Eq. (87) can be written

e(1, t) = φ(t) − Φ(t)ν, (90)

where

ν =

θ T κT T . (91)

Theorem 8. Consider the system (1)–(4)with filters (22)–(25), (28)–
(31) and (34)–(37) and with injection gains given by (63)–(64). Then
the following normalized update law

˙̂ν(t) = s(t)Γ
ΦT (t)(φ(t) − Φ(t)ν̂(t))

1 + ∥ΦT (t)Φ(t)∥2
(92)

where Γ > 0 is a gain, and

s(t) =


1 if t > tF
0 otherwise (93)

with tF given in (74), ensures that ν̃ = ν̂ − ν ∈ L∞. Moreover, if
Φ(t) and Φ̇(t) are bounded and ΦT (t) is persistently exciting (PE),
that is; there exist positive constants T0, c0, c1 so that

c0I ≤
1
T0

 t+T0

t
ΦT (τ )Φ(τ )dτ ≤ c1I (94)

where

I = I(m+1)n×(m+1)n (95)

for all t ≥ 0, then ν̂ → ν exponentially fast.

Proof. We construct a ‘‘prediction error’’ as follows

ê(1, t) = φ(t) − Φ(t)ν̂(t). (96)

Next, consider the Lyapunov function candidate

V (t) =
1
2
ν̃T (t)Γ −1ν̃(t) (97)

where ν̃(t) := ν̂(t) − ν. The time derivative of (97) is written as

V̇ (t) = s(t)ν̃T (t)
ΦT (t)ê(1, t)

1 + ∥ΦT (t)Φ(t)∥2
. (98)

Noticing that

ê(1, t) = φ(t) − Φ(t)ν̂(t) = e(1, t) − Φ(t)ν̃(t), (99)

we arrive at

V̇ (t) = s(t)
ν̃T (t)ΦT (t)e(1, t)
1 + ∥ΦT (t)Φ(t)∥2

− s(t)
|Φ(t)ν̃(t)|2

1 + ∥ΦT (t)Φ(t)∥2
. (100)

From (93), the first term of Eq. (100) is zero since for t ≤ tF , we
have s(t) = 0, and for t > tF , we have e(1, t) = 0 and s(t) = 1,
hence for t > tF

V̇ (t) = −
|Φ(t)ν̃(t)|2

1 + ∥ΦT (t)Φ(t)∥2
. (101)

The above equality shows that V is non-increasing and hence
bounded, which in turn implies that ν̃ is bounded.

We recall that in Section 3.5, the convergence of e and ϵ to zero
in a finite time and independently of the update law of Theorem 8
is stated. Therefore, the static form of the measurements in (90)
eventually reaches the form φ(t) = Φ(t)ν. The latter part of
Theorem 8 then follows from part (iii) of Theorem 4.3.2 in Ioannou
and Sun (1995). �
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Remark 9. The requirement of having Φ(t) and Φ̇(t) bounded is
ensured if the plant is stable.

Let Θ̂(t) be the matrix formed by stacking the components of
θ̂ (t) column-wise, that is

Θ̂(t) =

θ̂1(t) θ̂2(t) · · · θ̂m(t)


(102)

where

θ̂ (t) =

θ̂ T
1 (t) θ̂ T

2 (t) · · · θ̂ T
m(t)

T
(103)

and

ν̂(t) =

θ̂ T (t) κ̂T (t)

T
(104)

are the estimates for the parameters derived from the update law
of Theorem 8, namely, (92). One should notice that estimates for
the parameters Q0 and d can be obtained from solving (42)–(43)
with respect to Q0 and d, and replaceΘ and κ with their respective
estimates

Q̂0(t) = (I − Θ̂(t)A0)
−1Θ̂(t)B0 (105)

d̂(t) = (I − Θ̂(t)A0)
−1κ̂(t), (106)

whenever I − Θ̂(t)A0 is nonsingular (well-conditioned). Finally,
estimates for the states of the system can be derived from the
relationship (44)–(45) and the parameter estimates generated
from the update law of Theorem 8, namely, (92). That is

û(x, t) = a(x, t) + P(x, t)θ̂(t) + W (x, t)κ̂(t) (107)

v̂(x, t) = b(x, t) + R(x, t)θ̂(t) + Z(x, t)κ̂(t). (108)

Remark 10. The matrix (I − Θ̂(t)A0) may very well be singular
or close to singular, particularly in view of the fact that we have
not ruled out that (I − ΘA0) may be singular. This is a question of
uniqueness of the parameterizations (42) and (43). From (42), it is
observed that Θ uniquely parametrizes Q0 provided

det(A0Q0 + B0) ≠ 0. (109)

If (109) holds, then Lemma 13 in Appendix B states that the matrix
I − ΘA0 is invertible if and only if

det(B0) ≠ 0. (110)

Requirement (109) can also be interpreted as a question of
observability, since a singular matrix A0Q0 + B0 renders some of
the states in v(0, t) in (40), unobservable. The requirement (110)
is a question of identifiability of the parameters Q0.1 If the matrix
I − Θ̂(t)A0 is singular or close to singular, one can either conclude
that the conditions (109) and (110) do not hold for the system, or
that one lacks persistence of excitation.

4. Sensing anti-collocated with the uncertain parameters

4.1. Problem statement

In the present section, we consider the problem of estimating
the unknown boundary parameters Q0 and d as in Problem 1,
with one important distinction: the only available measurement is
now assumed to be the one anti-collocated with the uncertainties,
i.e., the measurement (18). This problem, whose mathematical
formulation is stated as Problem 2, is often more relevant than

1 This requirement ismost easily demonstrated using the 1-D case. It corresponds
to the problemof estimating the parameter q from themeasurements g and h, given
from g(t) = qf (t), h(t) = (q+ b)f (t). The parameter q is not identifiable for b = 0.
Problem 1 in practice. One example is oil well drilling, where it
is of interest to estimate reservoir pressure at the bottom of the
well from sensing equipmentmounted topside. Such an estimation
problem was recently solved for n + 1 hyperbolic systems in
Anfinsen, Di Meglio et al. (2016), using swapping design and time-
delaying measurements. We propose a similar method to the one
employed to solve Problem 1 and will reuse some of the filters
presented in Section 3.

4.2. Filter design

First off, we store the past values of the measurement y(t)
by introducing a new filter defined as the following transport
equation
Yt(x, t) + λYx(x, t) = 0 (111)
with boundary condition
Y(0, t) = y(t) (112)
where

Y(t) =

Y1(t) Y2(t) · · · Yn(t)

T (113)
and
λ := min

i
λi = λ1 (114)

provides past values of y(t), since

y(t − λ−1x) = Y(x, t). (115)
We also construct filters generating time-delayed signal values of
the input filters (22)–(23). Introducing

At(x, ξ , t) + λAx(x, ξ , t) = 0 (116)
Bt(x, ξ , t) + λBx(x, ξ , t) = 0 (117)

with boundary conditions

A(0, ξ , t) = a(ξ , t) (118)
B(0, ξ , t) = b(ξ , t) (119)

where

A(x, ξ , t) =

A1(x, ξ , t) · · · An(x, ξ , t)

T
, (120)

B(x, ξ , t) =

B1(x, ξ , t) · · · Bm(x, ξ , t)

T
. (121)

The filters (116)–(119) ensure the availability of the previous
values of a and b, since solving these PDEs by the method of
characteristics enables expressing their solutions as

a(ξ , t − λ−1x) = A(x, ξ , t) (122)

b(ξ , t − λ−1x) = B(x, ξ , t). (123)

Lastly, we slightly modify the P − R filters of (28)–(31) and define
the following filters

P̌t(x, t) + Λ+P̌x(x, t) = Σ++P̌(x, t) + Σ+−Ř(x, t)

− K1(x)P̌(1, t) (124)

Řt(x, t) − Λ−Řx(x, t) = Σ−+P̌(x, t) + Σ−−Ř(x, t)

− K2(x)P̌(1, t) (125)

with boundary conditions

P̌(0, t) = p̄T (t) ⊗ In×n (126)

Ř(1, t) = 0 (127)

where

p̄(t) = v(0, t − λ−1). (128)
Recall that v(0, t) is not measured, so (128) cannot be imple-
mented. In Section 4.3, we derive an alternative way of computing
p̄(t) using measured signals, only.
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4.3. Computation of the signal p̄(t)

The filters designed in Section 4.2 require Eq. (128), but the
boundary value v(0, t) is not measured. It turns out, however,
that v(0, t − λ−1) can be expressed in closed form using available
measurements, only.

Lemma 11. Consider the system (1)–(4) and the filters (111)–(112)
and (116)–(119). Let the vector of signals p̄(t) = {p̄i(t)}, i = 1 . . . n
have elements

p̄i(t) = Bi(1, 0, t) +

n
k=1

 1

0
Nik(0, ξ) exp


−

σkk

λk
(1 − ξ)


×


Yk(1 − λ−1

k λ(1 − ξ), t)

− Ak(1 − λ−1
k λ(1 − ξ), 1, t)


dξ (129)

where Nij, are the components of N of the solution (M,N) of (A.1)–
(A.6). Then for t > tF where tF is given from (74), we have

p̄(t) = v(0, t − λ−1). (130)

Proof. Construct the signals

ũ(x, t) = u(x, t) − a(x, t) (131)
ṽ(x, t) = v(x, t) − b(x, t) (132)

which have the following dynamics

ũt(x, t) + Λ+ũx(x, t) = Σ++ũ(x, t) + Σ+−ṽ(x, t)
− K1(x)ũ(1, t) (133)

ṽt(x, t) + Λ−ṽx(x, t) = Σ−+ũ(x, t) + Σ−−ṽ(x, t)
− K2(x)ũ(1, t) (134)

with the boundary conditions

ũ(0, t) = Q0v(0, t) + d (135)
ṽ(1, t) = 0. (136)

Similarly to the backstepping transformation of Lemma 6, we
introduce the following backstepping transformation

α̌(x, t) = ũ(x, t) −

 1

x
M(x, ξ)α̌(ξ , t)dξ (137)

β̌(x, t) = ṽ(x, t) −

 1

x
N(x, ξ)α̌(ξ , t)dξ, (138)

whichmaps the system (133)–(136) to the following target system

α̌t(x, t) + Λ+α̌x(x, t) = Σ̄++α̌(x, t) + Σ+−β̌(x, t)

−

 1

x
D+(x, ξ)β̌(ξ , t)dξ (139)

β̌t(x, t) − Λ−β̌x(x, t) = Σ−−β̌(x, t)

−

 1

x
D−(x, ξ)β̌(ξ , t)dξ (140)

with boundary conditions

α̌(0, t) =

 1

0
H(ξ)α̌(ξ , t)dξ + Q0v(0, t) + d (141)

β̌(1, t) = 0 (142)

where Σ̄++, M(x, ξ), N(x, ξ), D+(x, ξ), D−(x, ξ) and H(ξ) are as
in Section 3.4. The derivations are the same as in the proof of
Lemma 6, and are therefore omitted.
Now, similarly to Lemma 7, we will for t = t0 = µ−1
1 , have β̃ ≡

0, and the target error system (139)–(142) is therefore reduced to

α̌t(x, t) + Λ+α̌x(x, t) = Σ̄ α̌(x, t) (143)

α̌(0, t) =

 1

0
H(ξ)α̌(ξ , t)dξ

+ Q0v(0, t) + d (144)

or when written out in its components, yields, for i = 1 . . . n

∂t α̌i(x, t) + λi∂xα̌i(x, t) = σiiα̌i(x, t) (145)

α̌i(0, t) =

i−1
j=1

 1

0
hij(ξ)α̌j(ξ , t)dξ +

m
k=1

qikvk(0, t) + di. (146)

The solution of (145) is

α̌i(x, t) = exp


σii

λi
x


α̌i(0, t − λ−1
i x). (147)

Particularly,

α̌i(1, t) = ui(1, t) − ai(1, t) = yi(t) − ai(1, t), (148)

which means that α̌i(x, t) can be expressed using yi(t) and ai(1, t)
as follows

α̌i(x, t) = exp


−
σii

λi
(1 − x)


×


yi(t + λ−1

i (1 − x)) − ai(1, t + λ−1
i (1 − x))


. (149)

Again using the fact that β̌ ≡ 0 for t > t0 = µ−1
1 , we specifically

have that β̌(0, t) = 0, and from (138) we find

v(0, t) = b(0, t) +

 1

0
N(0, ξ)α̌(ξ , t)dξ . (150)

Next, with the help of (149), we may write them component wise
as

vi(0, t) = bi(0, t) +

n
k=1

 1

0
Nik(0, ξ) exp


−

σkk

λk
(1 − ξ)


×


yk(t + λ−1

k (1 − ξ)) − ak(1, t + λ−1
k (1 − ξ))


dξ
(151)

for 1 ≤ i ≤ m, where Nij(0, ξ) are the components of N(0, ξ). This
yields a way to compute v(0, t) from the measurements and the
signal b(0, t). However, it depends upon future values of y(t) and
a(1, t). What may be computed, however, are the time-delayed
versions of vi(0, t)

vi(0, t − λ−1) = Bi(1, 0, t)

+

n
k=1

 1

0
Nik(0, ξ) exp


−

σkk

λk
(1 − ξ)


×


Yk(1 − λ−1

k λ(1 − ξ), t)

− Ak(1 − λ−1
k λ(1 − ξ), 1, t)


dξ . (152)

Thus, we choose the elements of p̄(t) in (126) as (129), which
makes p̄(t) equal to v(0, t − λ−1) for t > tF , where tF is defined
in (74), and expressed using available filters and measurements
only. �
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4.4. Relationship to the system states and convergence

With the filters derived above, we define the following relations
to the system states

u(x, t − λ−1) = A(1, x, t) + P̌(x, t)q + W (x, t)d + ě(x, t) (153)

v(x, t − λ−1) = B(1, x, t) + Ř(x, t)q + Z(x, t)d + ϵ̌(x, t), (154)

where q contains the elements of Q0 stacked column-wise, that is

q =

qT1 qT2 · · · qTm

T
. (155)

As in Lemma 5, the error terms have the following dynamics

ět(x, t) + Λ+ěx(x, t) = Σ++ě(x, t) + Σ+−ϵ̌(x, t)

− K1(x)ě(1, t) (156)

ϵ̌t(x, t) − Λ−ϵ̌x(x, t) = Σ−+ě(x, t) + Σ−−ϵ̌(x, t)

− K2(x)ě(1, t) (157)

with boundary conditions

ě(0, t) = 0 (158)
ϵ̌(1, t) = 0. (159)

The error system (156)–(159) has the exact same structure as
the error system (47)–(50), which was shown in Lemma 7 in
Section 3.5 to converge to zero in finite time tF , given by (74).

4.5. Update law

Next, we derive the update law in order to estimate the
unknown boundary parameters from sensing anti-collocated with
the uncertain parameters. From the static relations (153), we
obtain

ě(1, t) = u(1, t − λ−1) − A(1, x, t) − P̌(1, t)q − W (1, t)d

= Y(1, t) − A(1, 1, t) − P̌(1, t)q − W (1, t)d. (160)

Next, we consider the following signals

φ̌(t) = Y(1, t) − A(1, 1, t) (161)

Φ̌(t) =

P̌(1, t) W (1, t)


(162)

and derive the following relation

ě(1, t) = φ̌(t) − Φ̌(t)ν2 (163)

where ν2 is

ν2 =

qT dT

T
. (164)

Theorem 12. Consider the system (1)–(4) with filters (22)–(25),
(116)–(119), (34)–(37) and (124)–(127) and with injection gains
given by (63)–(64). Then the following normalized update law

˙̂ν2(t) = s(t)Γ̌
Φ̌T (t)(φ̌(t) − Φ̌(t)ν̂2(t))

1 + ∥Φ̌T (t)Φ̌(t)∥2
(165)

where Γ̌ > 0 is a gain and s(t) is as defined in (93), ensures that
ν̃2 = ν̂2 − ν2 ∈ L∞. Moreover, if Φ̌(t) and ˙̌

Φ(t) are bounded and
Φ̌T (t) is persistently exciting (PE) as defined in (94), then the system
parameters converge to their true values exponentially.

Proof. The proof follows the exact same steps as the proof of
Theorem 8, and is therefore omitted. �
From the static relations (153)–(154), one can generate
estimates of the system states by substituting q and d with their
estimates generated from the adaptation law of Theorem 12,
namely, (165), thus

û(x, t − λ−1) = A(1, x, t) + P̌(x, t)q̂(t) + W (x, t)d̂(t) (166)

v̂(x, t − λ−1) = B(1, x, t) + Ř(x, t)q̂(t) + Z(x, t)d̂(t) (167)

where

ν̂2(t) =

q̂(t) d̂(t)


, (168)

which generate estimates of the system states from an earlier
point in time which precedes the real time by a time interval
that corresponds to the slowest of the transport speeds (λ−1)
that separate the boundary where sensing takes place from the
boundary at which the uncertainty is present. More sophisticated
methods will be needed to generate system states in real time.

5. Simulations

The system (1)–(4) was implemented in MATLAB for m = n =

2. The system transport speeds were set to
λ1 0
0 λ2


=


1 0
0 2


,


µ1 0
0 µ2


=


3 0
0 1


(169)

with the in-domain parameters set toσ++

11 σ++

12 σ+−

11 σ+−

12
σ++

21 σ++

22 σ+−

21 σ+−

22
σ−+

11 σ−+

12 σ−−

11 σ−−

12
σ−+

21 σ−+

22 σ−−

21 σ−−

22

 =
1
20

 0 2 2 −2
2 0 4 0
4 2 0 2

−1 2 2 0

 (170)

and the boundary parameter C1 set to

C1 =
1
10


1 −2
0.5 0.3


, (171)

while the unknown parameters to be identified were set to

Q0 =
1
5


0 5
2 −5


, d =

1
10


−7
6


. (172)

This plant is open-loop stable. The matrices in the measurement
(19) were set to

A0 =


1 1
0 2


, B0 =


0.5 2
1 1


(173)

which ensures that both (110) and (109) are satisfied. The initial
values for the plant were set to

u1(x, 0) = sin(x), u2(x, 0) = ex cos(x) (174)
v1(x, 0) = sin(2π(1 − x)), v2(x, 0) = x (175)

to create some transients.
The initial values for the filters were in both cases all set to zero.

The following was used as an input to ensure the PE properties of
the regressors

U1(t) = sin(t) + sin

1
2

√
3t


(176)

U2(t) = sin(2
√
2t). (177)

The adaptation gain was set to

Γ = 8 · I6×6, (178)

while the backstepping kernel equations (A.1)–(A.6) were solved
by successive approximations. (See e.g. the proof of existence of
solution to the kernel equations in Hu et al. (2016) for details
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Fig. 3. System states, observer of Theorem 8.
regarding how to bring the equations to integral form, and
perform successive approximations.) Since these equations are
independent of time, their solution can be computed once off-line
before any additional estimation takes place. The computational
cost is therefore of minor concern for a real-time observer. The
initial guesses of the parameters to be estimatedwere in both cases
all set to zero.

5.1. Problem 1: Sensing at both boundaries

The adaptive observer of Theorem 8 was here implemented.
The system states are displayed in Fig. 3, while the ‘‘prediction

errors’’ ê = u − û, ϵ̂ = v − v̂ are displayed in Fig. 4. The
estimated multiplicative parameters q̂ij as computed from (105)
and the estimated additive parameters d̂i computed from (106) are
displayed in Fig. 5. It is observed that the estimated parameters
converge to their true values as predicted by the theory, with the
prediction errors also converging to zero.

5.2. Problem 2: Sensing anti-collocated with the uncertainties

The system was here implemented with the adaptive observer
of Theorem 12. The estimated multiplicative and additive param-
eters, shown in Fig. 6, converge to their true values. It is worth
noticing that the estimation time is very similar to the one for the
observer of Theorem 8.

6. Conclusion

We have developed two adaptive observers for estimating
unknown parameters in the boundary condition of a general
system of n + m coupled, first-order 1-D hyperbolic PDEs. The
observers use swapping design in order the express the system
states as static relations between the unknown parameters and the
filters. Standard gradient or least squares update laws can then be
applied. Boundedness of the adaptive laws is proved. Exponential
convergence of the estimated parameters is also proved in the
presence of persistently exciting (PE) regressors. One observer
manages to estimate the unknown boundary parameters as well
as the system states from sensing at both boundaries, while the
second observer enables to estimate the unknown parameters
from sensing restricted to be anti-collocated with the uncertain
parameters. However, the latter observer generates estimates of
the system states from an earlier point in time which precedes the
real time by a time interval that corresponds to the fastest of the
transport speeds that separate the boundary where sensing takes
place from the boundary at which the uncertainty is present. The
theory was demonstrated in simulations.

The proposed adaptive observers have some limitations. The
observability and identifiability of the unknown parameters
for Problem 1 rely on conditions depending of the unknown
parameters, and hence, cannot be checked beforehand. For
Problem 2, real-time estimates of the system states are not
obtained. It is also difficult (or impossible) to check conditions for
persistent excitation, which is necessary for convergence of the
estimates to the true values of the parameters.

Possible future extensions include relaxations of the aforemen-
tioned limitations. Deriving an observer that manages to estimate
the boundary parameters and simultaneously generate real-time
estimates of the system states from sensing anti-collocated with
the uncertain parameters is of great interest, because it facilitates
for closed loop adaptive control of the system (1)–(4) with collo-
cated sensing and actuation.
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Fig. 4. Prediction errors, observer of Theorem 8.
Fig. 5. Estimated and actual boundary parameters, observer of Theorem 8.
 Fig. 6. Estimated and actual boundary parameters, observer of Theorem 12.
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Appendix A. Observer kernels equations

A.1. Kernel equations

The kernel equations are

Λ+Mx(x, ξ) + Mξ (x, ξ)Λ+
= Σ++M(x, ξ) + Σ+−N(x, ξ)

− M(x, ξ)Σ̄++ (A.1)

−Λ−Nx(x, ξ) + Nξ (x, ξ)Λ+
= Σ−+M(x, ξ) + Σ−−N(x, ξ)

− N(x, ξ)Σ̄++ (A.2)

with boundary conditions

Λ+M(x, x) − M(x, x)Λ+
+ Σ++

= Σ̄++ (A.3)

Λ−N(x, x) + N(x, x)Λ+
− Σ−+

= 0 (A.4)

with

Mij(0, ξ) = 0, for 1 ≤ i ≤ j ≤ n (A.5)

and

Mij(x, 1) =
σ++

ij

λj − λi
, for 1 ≤ j < i ≤ n. (A.6)

The well-posedness of these equations is addressed in the next
section.

A.2. Well-posedness

Wewill prove the existence of a solution of the kernel equations
(A.1)–(A.6) by transforming them into the form treated in Hu et al.
(2016). Consider the transformation

M̄ij(χ, y) = Mij(y, χ) ⇔ Mij(x, ξ) = M̄ij(ξ , x) (A.7)

N̄ij(χ, y) = Nij(y, x) ⇔ Nij(x, ξ) = N̄ij(ξ , x). (A.8)

Then Eqs. (A.1)–(A.6), when written out in their components,
become, for 1 ≤ i, j ≤ n

λj∂χ M̄ij(χ, y) + λi∂yM̄ij(χ, y) =

n
k=1

σ++

ik M̄kj(χ, y)

+

m
k=1

σ+−

ik N̄kj(χ, y) − σ++

jj M̄ij(χ, y) (A.9)

and for 1 ≤ i ≤ m, 1 ≤ j ≤ n

λj∂χ N̄ij(χ, y) − µi∂yN̄ij(χ, y) =

n
k=1

σ−+

ik M̄kj(χ, y)

+

m
k=1

σ−−

ik N̄kj(χ, y) − σ++

jj N̄ij(χ, y), (A.10)

with boundary conditions, for 1 ≤ i, j ≤ n, i ≠ j

M̄ij(χ, χ) =
σ++

ij

λj − λi
(A.11)

and 1 ≤ i ≤ m 1 ≤ j ≤ n

N̄ij(χ, χ) =
σ−+

ij

µi + λj
(A.12)
while for 1 ≤ i ≤ j ≤ n

M̄ij(χ, 0) = 0 (A.13)

with, for 1 ≤ j < i ≤ n

M̄ij(1, y) =
σ++

ij

λj − λi
. (A.14)

The kernel equations (A.9)–(A.14) have the same form as the K − L
kernels in Hu et al. (2016), for which well-posedness was proved.

Appendix B. Additional lemma

Lemma 13. Consider the matrices

A ∈ R
m×n, B ∈ R

m×m, Q ∈ R
n×m (B.1)

and assume the matrix AQ + B is invertible. Then, the matrix

F = In×n − Q (AQ + B)−1A (B.2)

is invertible if and only if B is invertible.

Proof (Proof originally from daw, 2015). Assume B is invertible.
Then

AF = A − AQ (AQ + B)−1 A

= A − (AQ + B − B) (AQ + B)−1 A

= B (AQ + B)−1 A. (B.3)

Let x be such that Fx = 0. It follows that AFx = 0, and thus, from
(B.3)

B (AQ + B)−1 Ax = 0. (B.4)

Since AQ + B and B are both nonsingular, Ax = 0 must hold. Then

Fx = (In×n − Q (AQ + B)−1A)x = x (B.5)

and hence x = 0, which means that F is invertible.
Next, assume F is invertible. Then

FQ = Q − Q (AQ + B)−1AQ

= Q − Q (AQ + B)−1(AQ + B − B)

= Q (AQ + B)−1B. (B.6)

Let x be such that Bx = 0. Then it follows from (B.6) that FQx = 0,
and since F is invertible, that is Qx = 0. Knowing that Qx = 0 and
Bx = 0, we deduce

(AQ + B)x = 0. (B.7)

Since AQ + B is invertible, x = 0, and hence B is invertible. �
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