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Control of Transport PDE/Nonlinear ODE Cascades
with State-Dependent Propagation Speed

Mamadou Diagne, Nikolaos Bekiaris-Liberis, Andreas Otto, and Miroslav Krstic

Abstract—In this paper, we deal with the control of a transport
PDE/nonlinear ODE cascade system in which the transport
coefficient depends on the ODE state. We develop a PDE-based
predictor-feedback boundary control law, which compensates
the transport dynamics of the actuator and guarantees global
asymptotic stability of the closed-loop system. The stability proof
is based on an infinite-dimensional backstepping transformation
and a Lyapunov-like argument. The relation of the PDE-ODE
cascade with a state-dependent propagation speed to an ODE
system with a state-dependent input delay, which is defined
implicitly via an integral of past values of the ODE state, is
also highlighted and the corresponding equivalent predictor-
feedback design is presented together with an alternative proof of
global asymptotic stability of the closed-loop system based on the
construction of a Lyapunov functional. The practical relevance
of our control framework is illustrated in an example that is
concerned with the control of a metal rolling process.

I. INTRODUCTION

The problem of stabilization of coupled transport PDE/ODE
systems in which the transport coefficient or the boundary
of the PDE domain varies with time is currently attracting
considerable attention. This is attributed to the fact that such
systems occur in a large number of challenging engineering
problems, typically when sensors and actuators are not co-
located and, particularly, in systems involving transport of
materials. Among several other applications, such systems are
utilized to describe the dynamics of screw extrusion processes
for additive manufacturing [1], metal cutting processes [2],
moisture in convective flows [3], populations [4], transport
phenomena in gasoline engines [5], [6], [7], [8], [9], crushing-
mills [10], production of commercial fuels by blending [11]
and of stick-slip instabilities during oil drilling [12], [13], [14],
[15].

In this paper, we consider a particular class of implicitly
defined state-dependent delays, which appear in numerous
applications and which are expressed as transport, with a
variable velocity (that may depend on the state of the ODE
system), over a constant distance [16]. In engineering, such
delays are sometimes called variable transport delays [17] and
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can be found, for example, in material flows in reactors [18],
whereas the same type of delays can be even found in biology,
typically known as threshold delays [4], [19].

Predictor-feedback control laws are often employed for
compensation of constant input delays, which appear in nu-
merous linear [20], [21] and nonlinear [22], [23] physical sys-
tems. In recent years, the extension of the predictor-feedback
concept to the case of nonlinear systems with input delays
that vary with time has been developed in [24], [25], [26]
(see also [27], [28] for other prediction-based approaches for
linear systems). Such predictor feedbacks are employed for
stabilization of PDE-ODE cascades in which the PDE part
describes the actuator dynamics of the ODE system, exploiting
an alternative representation of the PDE-ODE system via a
nonlinear system with input delay. In particular, [1] is dealing
with the control of the nozzle flow rate of screw extruders in
additive manufacturing utilizing a transport PDE/ODE cascade
model in which the length of the PDE domain depends
on the ODE state and [12], [13] with the stabilization of
nonlinear systems with actuator dynamics governed by a wave
PDE with moving boundary that depends on the ODE state
as well. Predictor-based control designs are also developed
for stabilization of transport PDE-ODE cascades with input-
dependent transport coefficient [9].

In this paper, we develop a PDE-based predictor-feedback
law for stabilization of a transport PDE/nonlinear ODE cas-
cade with state-dependent propagation speed. We prove global
asymptotic stability of the closed-loop system with the aid of a
Lyapunov functional that is constructed by introducing a novel
infinite-dimensional backstepping transformation. An alterna-
tive representation of the PDE/ODE cascade as a nonlinear
system with state-dependent input delay defined implicitly
through an integral of the ODE state, is derived, computing
the PDE solution with the method of characteristics. The
equivalent predictor-feedback design for the delay system is
also presented. We prove global asymptotic stability of the
closed-loop system in the new representation providing an
alternative proof.

The problem in this paper differs than a problem with a past-
state-dependent delay [29] in that the different (in comparison
to [29]) definition of the delay in the current case gives rise
to a different prediction horizon, which is defined implicitly
through an integral equation that incorporates the future values
of the state over the entire prediction window (and not just
as an explicit function of the current state as in the case
of a past-state-dependent delay). This results in a different
definition of the predictor in comparison to [29]. In addition,
unlike the contributions [25], [29], the present work offers a
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global stability result. This is due to the fact that the feasibility
condition that the delay rate is less than one is satisfied a
priori (irrespective of the values of the state and input). This
is guaranteed by the assumption of the uniform (with respect
to the state) strict positiveness of the transport speed made
here, which imposes a single direction of propagation of the
control signal along the actuation path (i.e., the control signal
never propagates in the opposite direction).

The effectiveness of the proposed control approach is illus-
trated in a simulation of a model for the control of a metal
rolling process [30], [31], [32], where a state-dependent delay
due to a state-dependent transport velocity occurs [33], [34].

This paper is organized as follows: In Section II, the
PDE/nonlinear ODE cascade system and the controller design
are presented. The statement of the main result and the stability
proof via PDE representation are introduced in Section III.
Section IV discusses the alternative representation of the
PDE/nonlinear ODE cascade system as an implicit state-
dependent input delay system. The design of an equivalent
controller for the delay system is established in Section V. The
stability analysis via delay system representation is presented
in Section VI. The paper ends with simulation results, which
illustrate the practical relevance of the proposed framework
via an application to metal rolling processes in Section VII.
Final remarks and future directions are provided in Section
VIII.

Notation: We use the common definition of class K, K∞
and KL∞ from [35]. For an n-vector, the norm |.| denotes
the usual Euclidean norm. We denote by Cj(A) the space of
functions that have continuous derivatives of order j on A.

II. PROBLEM STATEMENT AND CONTROLLER DESIGN

We consider the transport PDE/nonlinear ODE cascade
system with state-dependent propagation speed defined as

Ẋ(t) = f (X(t), u(0, t)) , (1)

where X ∈ Rn and f : Rn × R → Rn is continuously
differentiable with f(0, 0) = 0. The plant is located at
the boundary x = 0 of a transport device (e.g., a pipe,
which represents the actuation path) and controlled through
a transport equation given by

∂tu(x, t)− v (X(t)) ∂xu(x, t) = 0, (2)

where v : Rn → R+ is continuously differentiable with respect
to X . The actuation U(t) at the boundary x = D of the PDE
is written as

u(D, t) = U(t). (3)

The initial condition along the actuation path is defined as

u(x, 0) = u0(x). (4)

Assumption 1: The state-dependent propagation speed v :
Rn → R+ is continuously differentiable and there exists a
positive constant v⋆ such that

v(X) ≥ v⋆, for all X ∈ Rn. (5)

Assumption 2: There exist a smooth positive definite func-
tion C and class K∞ functions µ1, µ2 and µ3 such that for
the plant Ẋ = f(X,w), the following hold

µ1(|X|) ≤ C(X) ≤ µ2(|X|) (6)
∂C(X)

∂X
f(X,ω) ≤ C(X) + µ3(|ω|), (7)

for all (X, ω)T ∈ Rn+1.
Assumption 2 guarantees that system Ẋ = f(X,ω) is

strongly forward complete with respect to ω.
Assumption 3: System Ẋ = f(X,κ(X) + ω) is input-to-

state stable (ISS) with respect to ω. Moreover, the feedback
law κ : Rn → R is continuously differentiable with κ(0) = 0.

The definitions of strong forward completeness and input-
to-state stability are those from [36] and [37], respectively.

The predictor-feedback controller for system (1)–(3) is
given by

u(D, t) = κ(p(D, t)) (8)

p(x, t) = X(t) +

∫ x

0

1

v(p(y, t))
f(p(y, t), u(y, t))dy, (9)

for all x ∈ [0, D]. We emphasize that for implementing control
law (8), (9), one needs to measure the ODE state X(t) and
the PDE state u(x, t), x ∈ [0, D].

Fig. 1. Schematic of the closed-loop system

III. MAIN RESULT AND ITS PROOF VIA PDE
REPRESENTATION

Theorem 1: Consider the closed-loop system consisting of
the plant (1)–(3) and the control law (8), (9) under Assump-
tions 1, 2, and 3. For all initial conditions for which u0(x) is
locally Lipschitz on [0, D] and which satisfy the compatibility
condition u0(D) = κ (p(D, 0)), there exists a unique solution
to the closed-loop system with X(t) ∈ C1[0,∞) and u(x, t)
locally Lipschitz on [0, D]× [0,∞). Moreover, there exists a
class KL function Γ such that the following holds for all t ≥ 0

|X(t)|+ sup
x∈[0,D]

|u(x, t)| ≤ Γ

(
|X(0)|+ sup

x∈[0,D]

|u0(x)|, t

)
.

(10)

The Lipschitzness of the initial condition u0(x) and the
compatibility condition guarantee that the closed-loop system
is well-posed.
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The proof of Theorem 1 is based on the following lemmas
whose proof can be found in the Appendix (Section A).

Using the predictor state defined in (9), we introduce in the
first two lemmas a novel backstepping transformation (and its
inverse) that allows one to convert the original system to a
suitable “target system” whose stability is easier to establish
compared to the original closed-loop system (1)–(3), (8), (9).

Lemma 1: The control law defined in (8), (9), together with
the infinite-dimensional backstepping transformation

w(x, t) = u(x, t)− κ (p(x, t)) , (11)

where p(x, t) is defined in (9), maps the system (1), (2) with
the boundary condition (3) into the following target system

Ẋ(t) = f (X(t), κ (X(t)) + w(0, t)) , (12)
∂tw(x, t) = v(X(t))∂xw(x, t), x ∈ [0, D] (13)
w(D, t) = 0. (14)

Lemma 2: The inverse of the infinite-dimentional backstep-
ping transformation (11) is given by

u(x, t) = w(x, t) + κ (π(x, t)) , (15)

where π is defined as

π(x, t) = X(t) +

∫ x

0

[
1

v(π(y, t))

× f

(
π(y, t), κ (π(y, t)) + w(y, t)

)]
dy. (16)

In the next lemma we show that the target system (12)–(14)
is globally asymptotically stable employing a Lyapunov-like
argument.

Lemma 3: There exists a function ν ∈ KL such that

|X(t)|+ ∥w(t)∥∞ ≤ ν

(
|X(0)|+ ∥w(0)∥∞, t

)
, (17)

for all t ≥ 0.
Lemmas 4 and 5 show the equivalence between the norm of
the original system and the norm of the transformed system
based on Assumptions 1–3.

Lemma 4: There exists a class K∞ function ω̄ such that

sup
x∈[0,D]

|p(x, t)| ≤ ω̄

(
|X(t)|+ sup

x∈[0,D]

|u(x, t)|
)

t ≥ 0.

(18)

Lemma 5: There exists a class K∞ function ω such that

sup
x∈[0,D]

|π(x, t)| ≤ ω

(
|X(t)|+ sup

x∈[0,D]

|w(x, t)|
)
, t ≥ 0.

(19)

Proof of Theorem 1: Assumption 3 implies the existence
of a class K∞ function Ω such that

κ(|ξ|) ≤ Ω(|ξ|). (20)

From the backstepping transformation (11) defined in Lemma
1 we deduce the following inequalities

sup
x∈[0,D]

|w(x, t)| ≤ sup
x∈[0,D]

(
|u(x, t)|+Ω(|p(x, t)|)

)
, (21)

sup
x∈[0,D]

|u(x, t)| ≤ sup
x∈[0,D]

(
|w(x, t)|+Ω(|π(x, t)|)

)
. (22)

Then, from (18) and (19), we obtain

sup
x∈[0,D]

|w(x, t)| ≤ sup
x∈[0,D]

|u(x, t)|

+Ω ◦ ω̄
(
|X(t)|+ sup

x∈[0,D]

|u(x, t)|
)
,

(23)
sup

x∈[0,D]

|u(x, t)| ≤ sup
x∈[0,D]

|w(x, t)|

+Ω ◦ ω
(
|X(t)|+ sup

x∈[0,D]

|w(x, t)|
)
.

(24)

From (23) and (24), there exist some class K∞ functions λ̄
and λ such that

|X(t)|+ sup
x∈[0,D]

|w(x, t)| ≤λ̄
(
|X(t)|+ sup

x∈[0,D]

|u(x, t)|
)
,

(25)

|X(t)|+ sup
x∈[0,D]

|u(x, t)| ≤λ
(
|X(t)|+ sup

x∈[0,D]

|w(x, t)|
)
.

(26)

Combining (17) and (26) we conclude that

|X(t)|+ sup
x∈[0,D]

|u(x, t)|

≤ λ

(
ν

(
|X(0)|+ sup

x∈[0,D]

|w0(x)|, t
))

. (27)

Using (25) we recover (10) with Γ(s) = λ
(
ν
(
λ̄(s)

))
.

In order to prove the well-posedness of the closed-loop
system consisting of (1)–(3) with the controller (8), (9), we
first compute the solution to (13), (14) with respect to a given
initial condition (X(0), w0(x)). We denote by w(x(s), t(s))
the characteristic curve passing through the point (x, t) ∈
[0, D]× [0,∞), i.e.,

dt(s)

ds
= 1, (28)

dx(s)

ds
= −v(X(t(s))), (29)

dw(s)

ds
= 0, (30)

with the initial conditions t(0) = 0, x(0) = x0, and
w(0) = w0(x0), respectively. Integrating (28)–(30) along the
characteristic lines one deduces the solution of (13), (14) as

w(x, t) = w0

(
x+Φ(t)

)
, for all 0 ≤ x+Φ(t) ≤ D (31)

w(x, t) = 0, for all x+Φ(t) ≥ D, (32)

Φ(t) =

∫ t

0

v(X(λ))dλ. (33)

Thus, for t < Φ−1(D) system (12) is written as

Ẋ(t) = f
(
X(t), κ (X(t)) + w0

(
Φ(t)

))
, (34)

Φ̇(t) = v(X(t)), (35)
Φ(0) = 0. (36)
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From the backstepping transformation (11), we obtain

w0(x) = u0(x)− κ (p0(x)) , (37)

where p0(x) is given by

p0(x) = X(0) +

∫ x

0

1

v(p0(y))
f(p0(y), u0(y))dy. (38)

Since κ, f , U , and v are continuously differentiable, we deduce
the local Lipschitzness of w0(x) from the Lipschitzness of
u0(x) stated in Theorem 1 and (38). Then, relations (34)–
(36) imply the local Lipschitzness of the right-hand side of
the (X,Φ) system, which in turn ensures the existence and
uniqueness of (X(t),Φ(t)) ∈ C1[0,Φ−1(D)) where Φ−1(D)
satisfies

D =

∫ Φ−1(D)

0

v(X(τ))dτ. (39)

For t > Φ−1(D), w(0, t) = 0 and the dynamics of X
in (34) are reduced to Ẋ = f(X,κ(X)). The Lipschitz-
ness of f and κ guarantee the existence and uniqueness
of X(t) ∈ C1(Φ−1(D),∞) and the compatibility condition
guarantees that X is differentiable at Φ−1(D), and thus,
X(t) ∈ C1[0,∞).

From (31), (32) and (13), (14) the well-posedness of X
together with the continuous differentiability and the strict
positiveness of the transport speed v(X) imply the existence
and uniqueness of w(x, t) which is locally Lipschitz on (x, t),
for all (x, t) ∈ [0, D]× [0,∞). Using the equivalence between
the signals p(x, t) and π(x, t) stated in (104), it can be deduced
from (100) that the π-system satisfies the following PDE

∂tπ(x, t) = v(X(t))∂xπ(x, t), (40)
π(0, t) = X(t). (41)

Defining the characteristic curves parameterized by some
variable τ and expressing the total derivative of π(x(τ), t(τ))
in order to derive the equivalent set of ODE for the system (40)
along the characteristic lines, the solution of the transport PDE
(40), compatible with the boundary condition (41) is written
as 1

π(x, t) = X
(
Φ−1 (x+Φ(t))

)
. (42)

The existence and uniqueness of (X(t),Φ(t)) ∈ C1[0,∞)
ensures that π(x, t) is continuously differentiable on [0, D]×
[0,∞), and thus, from the inverse backstepping transformation
(15) and the local Lipschitzness of w(x, t) we get the local
Lipschitzness of u(x, t) on [0, D]× [0,∞).

IV. LINKING THE PDE-ODE CASCADE TO AN IMPLICIT
STATE-DEPENDENT INPUT DELAY SYSTEM

In this section we present an alternative state-dependent
delay system represention of the transport PDE/nonlinear ODE
cascade system (1)–(3). The method of characteristics is used
first in order to solve the transport PDE equation (2). Defining
the characteristic curves parameterized by some variable τ , the

1The explicit derivation of such solutions is given in detail later on in
Section IV and is similar to the procedure employed for the derivation of
(31)–(33).

state of the PDE can be described by u(x(τ), t(τ)) whose total
derivative is written as

du(x(τ), t(τ))

dτ
=
∂u

∂t

dt

dτ
+
∂u

∂τ

dx

dτ
. (43)

By comparing the total derivative and the transport equation
(2) we deduce the following ODEs system

dt(τ)

dτ
= 1, (44)

dx(τ)

dτ
= −v (X(t(τ))) , (45)

du(τ)

dτ
= 0. (46)

Integration of the ODEs (44) and (45) yields the characteristic
curves of the PDE (2) given as

t(τ) = t0 + τ, t(0) = t0 (47)

x(τ) =

∫ τ

0

dx(λ)

dλ
dλ+ x(0) (48)

= −
∫ τ

0

v (X(t0 + λ)) dλ+D, x(0) = D (49)

Now, we define the primitive function of the variable transport
velocity as

ΦX(t) =

∫ t

0

v (X(λ)) dλ. (50)

Since the transport velocity v is assumed to be strictly positive,
the function ΦX(t) is a monotonically increasing function
and defines a bijective mapping between time and space.
The subscript X denotes the state-dependence of the function
ΦX(t). By combining (49) and (50), we derive the following
relation

x(τ) = ΦX(t0)− ΦX(t0 + τ) +D. (51)

We next reduce the PDE-ODE system to a state-dependent
delay system (see Fig. 2). We consider the characteristic curves
with x(τ) = 0 at time t = t0 + τ as illustrated in Fig. 2 and
define the time delay RX(t) = t − t0. According to (51) the
state-dependent input delay is implicitly given as

D = ΦX(t)− ΦX(t−RX(t)). (52)

Since the function ΦX(t) depends on the state X of the plant,
the delay RX(t) is also state-dependent. From (46) we know
that the solution of the transport PDE (2) is constant along the
characteristic curves. Thus,

u(0, t) = u(D, t−RX(t)) = U(t−RX(t)). (53)

Consequently, using (52) and (53), the original cascade system
(1)–(3) is reduced to a nonlinear system with an implicit state-
dependent input delay, which is written as

Ẋ(t) = f (X(t), U(ϕ(t))) (54)
ϕ(t) = t−RX(t) (55)

D =

∫ t

ϕ(t)

v(X(λ))dλ. (56)

We are not aware of a result dealing with the delay compen-
sation of general nonlinear systems (54) with input delay of the
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Fig. 2. Equivalence between the PDE/ODE cascade system and the delay
system.

form (55), (56). A relevant result can be found in [9]. However,
the results in [9] are dealing with linear ODE systems and the
delay is defined implicitly through an integral of past input
values rather than past state values (as in (56)). In addition
the result in [9] does not aim at completely compensating the
input delay. A possible next step would be to consider the
problem of delay compensation for general nonlinear ODE
systems with input-dependent input delay of an integral type
as the one considered in [9].

In the following, we design the predictor-feedback control
law for the delay system (54)–(56) and present a stability anal-
ysis for the closed-loop system in delay system representation.

V. PREDICTOR FEEDBACK CONTROL DESIGN FOR THE
EQUIVALENT DELAY SYSTEM

Let us define κ(X) to be the nominal stabilizing feedback
control law for the delay free plant Ẋ(t) = f (X(t), U(t)) .
The predictor feedback control law for system (54) is

U(t) = κ(P (t)), (57)

where

P (t) = X(t) +

∫ t

ϕ(t)

v(X(θ))

v(P (θ))
f (P (θ), U(θ)) dθ, (58)

with the initial condition

P (θ) = X(0) +

∫ θ

ϕ(0)

v(X(s))

v(P (s))
f (P (s), U(s)) ds, (59)

for all ϕ(0) ≤ θ ≤ 0. The fact that the predictor is given by
(58) with the delay being defined by (56) can be seen as
follows. Defining the prediction time

σ(t) = ϕ−1(t) (60)

we derive the following implicit relation with respect to σ

D =

∫ σ(t)

t

v(X(λ))dλ. (61)

Taking the time derivative of (61), we get

σ̇(t)v (X(σ(t)))− v (X(t)) = 0, (62)

that is,

σ̇(t) =
v(X(t))

v (X (σ(t)))
. (63)

Substitution of t = σ(θ), θ ∈ [ϕ(t), t], in (54) leads to

Ẋ(σ(θ)) = σ̇(θ)f(X (σ(θ)) , U(θ)). (64)

Hence,

Ẋ(σ(θ)) =
v(X(θ))

v (X (σ(θ)))
f (X (σ(θ)) , U(θ)) . (65)

Integrating (65) over [ϕ(t), t] and using definition

P (t) = X (σ(t)) , (66)

we derive the predictor (58) with initial condition (59).
To implement numerically the predictor feedback control

law (57)–(59), one needs to compute at each time step ϕ(t)
using (56) and employing the history of the state X . An
example of computing numerically ϕ(t) is presented in the
next section. Relevant numerical schemes for computation of a
delay defined implicitly via an integral equation of the control
input are presented in [9], [38]. Moreover, one then needs to
numerically compute the predictor P (t) using (58) employing,
in addition, the history of the input U . We emphasize that
in the recent papers [39], [40], the implementation issue of
predictor feedback is discussed in detail and various numerical
schemes are developed for computation of predictor feedback
laws.

VI. STABILITY ANALYSIS VIA DELAY SYSTEM
REPRESENTATION

Theorem 2: Consider the closed-loop system consisting
of the plant (54)–(56) and the control law (57), (58) under
Assumptions 1, 2, and 3. For all initial conditions for which
U and X are locally Lipschitz on the interval [ϕ(0), 0] and
which satisfy the compatibility condition U(0) = κ(P (0)),
there exists a unique solution to the closed-loop system with
X(t) ∈ C1[0,∞) and U(t) ∈ C1(0,∞). Moreover, there
exists a class KL function Λ such that the following holds

Ω(t) ≤ Λ (Ω(0), t) , t ≥ 0, (67)

where,

Ω(t) = sup
ϕ(t)≤θ≤t

|X(t)|+ sup
ϕ(t)≤θ≤t

|U(θ)|. (68)

In order to prove Theorem 2 we state the following lemmas
whose proofs are provided in the Appendix (Section B).

Lemma 6: The infinite-dimensional backstepping transfor-
mation of the actuator state given by

W (θ) = U(θ)− κ(P (θ)), (69)

for all ϕ(t) ≤ θ ≤ t, together with the controller (57), (58)
transform system (54)–(56) into the following target system

Ẋ(t) = f (X(t), κ(X(t)) +W (ϕ(t))) (70)
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W (t) = 0. (71)

Lemma 7: The inverse of the infinite-dimensional backstep-
ping transormation (69) is defined for all ϕ(t) ≤ θ ≤ t by

U(θ) = W (θ) + κ(Π(θ)), (72)

with

Π(θ) = X(t) +

∫ θ

t−RX(t)

(
v(X(λ))

v(Π(λ)

× f (Π(λ), κ(Π(λ)) +W (λ))

)
dλ (73)

In the next lemma we show that the target system (70)–
(71) is globally asymptotically stable constructing a Lyapunov
functional. Note that the presented proof argument is different
from the one used in the proof of Lemma 3.

Lemma 8: There exists a class KL function β such that the
following holds

Ξ(t) ≤ β (Ξ(0), t) , t ≥ 0 (74)
Ξ(t) = sup

ϕ(t)≤θ≤t

|X(θ)|+ sup
ϕ(t)≤θ≤t

|W (θ)|. (75)

Lemma 9: There exists a class K∞ function ρ such that the
following holds for all ϕ(t) ≤ θ ≤ t

|P (θ)| ≤ ρ

(
|X(t)|+ sup

t−RX(t)≤s≤t

|U(s)|

)
. (76)

Lemma 10: There exists a class K function ψ such that the
following holds

|Π(θ)| ≤ ψ

(
|X(t)|+ sup

t−RX(t)≤s≤t

|W (s)|

)
, (77)

for all t−RX(t) ≤ θ ≤ t.
Lemma 11: There exist class K∞ functions ρ1 and µ4 such

that the following hold

Ω(t) ≤ µ4(Ξ(t)), (78)
Ξ(t) ≤ ρ1(Ω(t)), (79)

where Ω and Ξ are defined in (67) and (75), respectively.
Proof of Theorem 2: Combining (78), (79) with (74), we
deduce that inequality (67) is satisfied with

Λ(s) = µ−1
4

(
β (ρ1(s)) , t

)
. (80)

We prove next, existence and uniqueness of solutions. We
consider the system (X,ϕ) defined as

Ẋ(t) = f (X(t), U(ϕ(t))) , (81)

ϕ̇(t) =
v(X(t))

v(X(ϕ(t))
, (82)

where the initial condition ϕ(0) satisfies the following relation

D =

∫ 0

ϕ(0)

v(X(λ))dλ. (83)

For all 0 ≤ t < σ(0), it holds that ϕ(0) ≤ ϕ(t) < 0, and thus,
since the initial conditions X(s) and U(s), ϕ(0) ≤ s < 0,
are Lipschitz the right-hand side of the (X,ϕ) system (81),

(82) is Lipschitz with respect to (X,ϕ) . Thus, existence and
uniqueness of (X(t), ϕ(t)) ∈ C1[0, σ(0)) follows.

Then, for t > σ(0), from the target system Ẋ =
f(X,κ(X)) and the continuous differentiability of f and κ we
get existence and uniqueness of X(t) ∈ C1(σ(0),∞). With
the compatibility condition we get that X is differentiable also
at σ(0), and thus, X(t) ∈ C1[0,∞).

Differentiating (73) with respect to t we have

Π̇(t) =
v(X(t))

v (Π(t))
f (Π(t)), κ(Π(t))) , for all t ≥ 0. (84)

Introducing the change of variables τ = ΦX(t) we rewrite
system (84) as

˙̄Π(τ) =
1

v
(
Π̄(τ)

)f (Π̄(τ)), κ(Π̄(τ))
)
, for all τ ≥ 0, (85)

where Π̄(τ) = Π
(
Φ−1

X (τ)
)
. Since κ, v and f are continuously

differentiable, it follows that there exists a unique solution
Π̄(τ) ∈ C1[0,∞). Thus, Π̄(ΦX(t)) is continuously differen-
tiable with respect to t for all ΦX(t) ≥ 0, i.e., t ≥ Φ−1

X (0) =
0, since X(t) ∈ C1[0,∞) and Φ̇X(t) = v(X(t)). Hence, since
Π(t) = Π̄(ΦX(t)) we deduce that Π(t) ∈ C1[0,∞), and thus,
we get that U(t) ∈ C1(0,∞), which concludes the proof.

VII. APPLICATION TO METAL ROLLING PROCESSES

The metal rolling process is a common industrial process
where, in essence, a deformation of a workpiece takes place
between two rolls with parallel axes revolving in opposite
directions as shown in Fig. 3 [41]. In industry, the initial
breakdown of ingots is generally performed using hot rolling
while the cold rolling is crucial for the production of sheet
or strip with good surface finishes and increased mechanical
strength. However, in practice often undesired self-excited vi-
brations occur, which are known as chatter [32] and are closely
related to the machine tool vibrations in metal cutting [2]. In
general, the reason for chatter vibrations are the interaction
between the structural dynamics of the mill stand and the
rolling process, where for unstable situations energy from the
machine drives is captured by the process and transformed
into vibration energy of the structure. In these systems, time
delays occur due to the material transport between two passes
or between two stands of the mill [32], [42]. These delays
are state-dependent due to their dependency on the state-
dependent velocity of the metal strip [33], [43], but these are
often approximated by constant delays [44]. There are several
strategies to control the strip thickness in metal rolling [30],
[31], [41], [45], but the effect of state-dependent delays on
the dynamics of metal rolling is only rarely studied in the
literature [34]. In this section, the compensation of the state-
dependent delay in metal rolling via the predictor feedback
control design from Section V is illustrated. In an industrial
application of cold rolling the control task is very complex
including, for example, the control of interstand tension and
interstand strip thickness between multiple mill stands as well
as eccentricity control of the rolls. In the present contribution,
we consider only strip thickness control at a single mill stand
to focus on the compensation of the state-dependent delays,
which are generic for these type of processes.
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Fig. 3. Metal rolling schematic.

A. Modeling of metal rolling.

The physical layout of the mill stand is illustrated in Fig. 3.
It is closely related to the rolling model from [30], [31], [41].
The bottom roll is assumed to be rigid, whereas the position
of the upper roll is adjustable. The flexible roll with lumped
mass m2 is connected via a spring with stiffness k to a roll
gap adjusting mechanism with lumped mass m1. Both ends
of the spring are movable and the equation of motion can be
given by

m1ÿ(t) + d
(
ẏ(t)− ḣo(t)

)
+ k
(
y(t)− ho(t)

)
= Fc

m2ḧo(t) + d
(
ḣo(t)− ẏ(t)

)
+ k
(
ho(t)− y(t)

)
= Fr,

(86)

where y(t) and ho(t) specify the positions of the upper and
the lower end of the spring, respectively. In particular, ho(t)
is equivalent to the roll gap and the upper position y(t) is
defined in such a way that it is equivalent to the roll gap if
the spring is not compressed. In contrast to [30], [31], [41],
we do not neglect the inertial force of the roll (m2 > 0) and
we consider a damping term with damping coefficient d. We
assume that damping is proportional to the derivative of the
relative displacement of the spring. The variables Fc(t) and
Fr(t) denote the control and the process forces that act on
the upper and the lower end of the spring, respectively. The
process force Fr in metal rolling depends in a nonlinear way
on the difference between the input thickness hi and the output
thickness ho(t) of the metal

Fr = F (ho(t)) = kf
√
hi − ho(t), (87)

where the input thickness hi is assumed to be constant and kf
specifies the force coefficient. Details on the derivation of the
force law and the determination of the force coefficient kf in
metal rolling can be found in [32], [42], [45], [46].

A feedback controller is used to keep the output thickness
ho(t) at a desired reference value hr by controlling the
force Fc on the upper end of the spring. A PD controller

is considered for the stabilization of the output thickness. In
particular, the nominal controller is given by

Fc(t) = U(t) = Kp

(
hr − ho(t)

)
−Kdḣo(t)− F0, (88)

where Kp and Kd are the gains for the proportional and
the derivative terms, respectively. The constant part F0 =
kf

√
hi − hr is necessary to provide the constant rolling force

for keeping the output thickness at the desired reference value
hr. In practice, the measurement point for the output strip
thickness is located a constant distance D away from the
rolling mill. In an industrial mill stand, realistic values for D
range from 1 m to 2 m, which implies that the delay cannot
be neglected and significant delay variations are possible for
lower speeds [44]. Hence, we assume that only a delayed
version U(ϕ(t)) of the feedback control input (88) can affect
the plant. The delayed time ϕ(t) is given by (56), where
v(X(t)) specifies the velocity of the metal strip over the
constant distance D [33], [34], [43]. Due to mass conservation
the velocity v(X(t)) can be specified by [32], [43], [45]

v(ho(t)) =
hivi
ho(t)

, (89)

where the input velocity vi of the metal is constant and where
it is assumed that the width of the strip does not change during
the process [43]. Thus, a state-dependent delay RX(t) appears
[33], [34], [43]. We only consider the case ho > 0 because
(89) is not adequate to model a collapse with ho = 0.

We now introduce the state variables of the system as
follows

X1(t) = h0(t), X2(t) = ḣ0(t), X3(t) = y(t), X4(t) = ẏ(t).
(90)

The rolling example (86) with the force (87) and the state-
dependent transport velocity (89) can be written as a system
of delay differential equations (DDEs) with state-dependent
delay, in the form (54)–(56), as

Ẋ1(t) = X2(t),

Ẋ2(t) =
kf
m2

√
hi −X1(t) +

d

m2

(
X4(t)−X2(t)

)
+

k

m2

(
X3(t)−X1(t)

)
,

Ẋ3(t) = X4(t),

Ẋ4(t) =
d

m1

(
X2(t)−X4(t)

)
+

k

m1

(
X1(t)−X3(t)

)
+

1

m1
U(ϕ(t)),

D =

∫ t

ϕ(t)

hivi
X1(θ)

dθ,

(91)

where we have dropped all trivial time dependencies t. Under
the proposed control law (88) and realistic parameter values
(namely, hi − hr > 0) the closed-loop system (91) has one
equilibrium X∗ = (hr, 0, y

∗, 0), where U = −F0 and

y∗ = hr −
kf
k

√
hi − hr. (92)

The objective is to stabilize the equilibrium X∗.
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B. Delay-free closed-loop system

The predictor feedback control compensates the state-
dependent delay RX(t) = t − ϕ(t). Thus, ideally, the per-
formance of the closed-loop system with delay under the
predictor feedback control law would be equivalent to the
performance of the closed-loop system without delay, and
under the nominal delay-free feedback law, after a finite
transient period (i.e., after the control signal reaches the plant).
We briefly discuss the stability of the linearized delay-free
closed-loop system. The characteristic equation of system (91)
(linearized around the equilibrium X∗) without delay under
the nominal control law (88) is given by

m1m2s
4 + d(m1 +m2)s

3

+ (krm1 + km1 + km2 + dKd)s
2

+ (Kpd+Kdk + krd)s+ k(Kp + kr) = 0, (93)

where kr = kf/(2
√
hi − hr) is the stiffness of the rolling

process at the equilibrium. For the open-loop system, i.e.,
Kp = 0 and Kd = 0, it can be derived from the Routh-
Hurwitz criterion that the equilibrium is always stable in the
case of a physically meaningful choice of the parameters (all
parameter values larger than zero and hi > hr). However,
numerical simulations have shown that the open-loop system
is only weakly stable, which means that potential transient
oscillations decay very slowly. The maximum real part of
the characteristic roots is calculated numerically from (93)
for the plant parameter values from Table I and varying
control parameters Kp and Kd. The result is presented in the
contour plot in Fig. 4. In particular, for the open-loop system
the real part of the dominant characteristic root is given by
−0.0035s−1, which means that a controller should be applied
to suppress undesired long-lasting transient oscillations. The
choice Kp = 106Nm−1, Kd = 6500Nsm−1 (labeled by ’x’
in Fig. 4) leads to good nominal transient performance in the
sense that the real part of the characteristic root is given by
−22.33s−1.
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0

2000

4000
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10000
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0

-10

-20

-20

-10

0
10

Fig. 4. Performance of the nominal control law for the system without delay

C. Simulation results for system with delay

Simulations of the rolling process were performed by inte-
grating the equations of motion (91) with the MATLAB solver
ddesd for DDEs with state-dependent delay. The MATLAB
solver requires an explicit expression for the delayed time

TABLE I
PHYSICAL DEFINITION OF THE PARAMETERS

Symbol and value Units (S.I) Definition
m1 = 50 kg Mass of adjusting mechanism
m2 = 100 kg Mass of flexible roll
d = 3000 Nsm−1 Damping coefficient
k = 10× 106 Nm−1 Stiffness
KF = 50000 N.m−0.5 Force constant
hi = 0.005 m Input thickness
hr = 0.003 m Desired output thickness
vi = 5 m.s−1 Input velocity
D = 0.1 m Distance between

rolls and sensor
Kp = 1× 106 Nm−1 Proportional gain

of PD-Controller
Kd = 6500 Nsm−1 Derivative gain

of PD-Controller

ϕ(t), which can be obtained by numerical integration of the
time derivative of (56)

ϕ̇(t) =
v(X(t))

v (X (ϕ(t)))
, (94)

with initial condition ϕ(0) obtained by numerically integrating
(56) in the interval of the initial function. The predictor state
P (t) is obtained by a numerical integration of (58). We have
used constant upper position y(θ) = hi and constant output
thickness ho(θ) = hi with ϕ(0) ≤ θ ≤ 0 as initial conditions,
which means that for t < 0 the rolling force and the control
force are zero. At t = 0 the first input, which is given by the
constant initial condition U(θ) = −F0, ϕ(0) ≤ θ ≤ 0, arrives
at the plant and the deformation of material starts. The initial
condition of the predictor is obtained by numerical integration
of (59).

Three different cases were studied. On the one hand, the
uncompensated PD controller (88) with the nominal feedback
law κ(X(t)) from (88) and the open-loop control law were
employed. On the other hand, the predictor feedback law
(57) for the nominal feedback law (88) was employed. The
simulation reveals the necessity to compensate the delay in
order to avoid collapse phenomena as it is shown in Fig. 5 and
Fig. 6. More precisely, the uncompensated control action leads
to a negative thickness, which is not admissible physically for
the metal rolling dynamics. The simulation results also exhibit
the limitation of the open-loop control with Fc = −F0, which
is not able to drive the system to the reference thickness value
hr fast enough as illustrated in Fig. 5 and Fig. 6. In addition,
we have employed the nominal PD controller (88) in system
(91) without delay (D = 0) to verify the equivalence between
the response of the closed-loop system with delay (D > 0)
under the predictor feedback control law and the response of
the delay-free system with the nominal control law D = 0.
Fig. 7 shows that, in fact, practically no deviations occur
between the response of the nominal controller of the delay-
free system and the response of the predictor feedback control
in the delayed system. Note that for the delay-free system we
have used U(t) = −F0 for the time interval 0 ≤ θ ≤ σ(0)
similar to the initial condition U(t), ϕ(0) ≤ t ≤ 0, for the
input of the system with delay.
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VIII. CONCLUSIONS

In this paper, we present the predictor feedback control
design for transport PDE/nonlinear ODE cascades in which
the transport coefficient depends on the ODE state. The
proof of stability of the closed-loop system is established by
using a backstepping transformation which maps the original
system into a suitable target system whose stability is proven
using a Lyapunov-like argument. The equivalence between
the stability of the target and the original systems is stated
using the invertibility of the backstepping transformation. An
alternative representation of the coupled PDE-ODE system
with a nonlinear system with state-dependent input delay is
presented. The equivalent predictor-feedback control design
for the delay system is introduced and an alternative proof
of global asymptotic stability of the closed-loop system is
provided constructing a Lyapunov functional. Consistent sim-
ulation results are provided applying the proposed algorithm
to a model of a metal rolling processes in which the control
of the output thickness is a critical issue.
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APPENDIX A
PDE REPRESENTATION LEMMAS’ PROOFS

A. Proof of Lemma 1

The proof of Lemma 1 is established in the following steps:
1) Differentiating (9) with respect to t, the following rela-

tion is deduced

∂tp(x, t) =−
∫ x

0

1

v(p(y, t))

× ∇v(p(y, t))
v(p(y, t))

[f(p(y, t), u(y, t))∂tp(y, t)

− ∂pf(p(y, t), u(y, t))∂tp(y, t)] dy

+

∫ x

0

1

v(p(y, t))

× ∂uf(p(y, t), u(y, t))∂tu(y, t)dy

+ f(p(0, t), u(0, t)). (95)

Next, differentiating (9) with respect to x we arrive at

v(X(t))∂xp(x, t) =−
∫ x

0

(
v(X(t))

∇v(p(y, t))
v2(p(y, t))

× f(p(y, t), u(y, t))∂yp(y, t)

)
dy

+

∫ x

0

v(X(t))

v(p(y, t))

× ∂pf(p(y, t), u(y, t))∂yp(y, t)dy

+

∫ x

0

v(X(t))

v(p(y, t))

× ∂uf(p(y, t), u(y, t))∂yu(y, t)dy

+
v(X(t))

v(p(0, t))
f(p(0, t), u(0, t)).

(96)

Combining (95) and (96), the following equality holds

∂tp(x, t)− v(X(t))∂xp(x, t) = −
∫ x

0

1

v(p(y, t))

×
[
f(p(y, t), u(y, t))

∇v(p(y, t))
v(p(y, t))

×
(
∂tp(y, t)− v(X(t))∂yp(y, t)

)]
dy

+

∫ x

0

1

v(p(y, t))
∂pf(p(y, t), u(y, t))

×
(
∂tp(y, t)− v(X(t))∂yp(y, t)

)
dy. (97)

Now, we define the function G(x, t) = ∂tp(x, t) −
v(X(t))∂xp(x, t), which satisfies

dG(x, t)

dx
= − 1

v(p(x, t))

×
[
f(p(x, t), u(x, t))

∇v(p(x, t))
v(p(x, t))

− ∂pf(p(x, t), u(x, t))]G(x, t) (98)
G(0, t) = 0. (99)

Hence, G(x, t) = 0 for all x ∈ [0, D], which implies
that

∂tp(x, t)− v(X(t))∂xp(x, t) = 0. (100)

2) Taking the time and the spatial derivative of the back-
stepping transformation (11), we get

∂tw(x, t) = ∂tu(x, t)− ∂pκ (p(x, t)) ∂tp(x, t), (101)

and,

∂xw(x, t) = ∂xu(x, t)

− ∂pκ (p(x, t)) ∂xp(x, t), (102)

respectively, which leads to

∂tw(x, t)− v(X(t))∂xw(x, t) = −∂pκ (p(x, t))

×
[
∂tp(x, t)− v(X(t))∂xp(x, t)

]
+ ∂tu(x, t)− v(X(t))∂xu(x, t). (103)

Using (2) and (100), we derive (13) from (103). The ODE
dynamics (12) and the boundary condition (14) are obtained
by direct verification from (11) for x = 0 and (8), respectively.

B. Proof of Lemma 2

The inverse transformation (15) maps w 7→ u and is associ-
ated to the target system predictor, namely, (16) whereas the
direct transformation (11), which maps u 7→ w, is associated to
the plant predictor, namely, (9). Thus, even if the two predictor
representations are driven by different input signals, it holds
that

p(x, t) = π(x, t), ∀x ∈ [0, D]. (104)

C. Proof of Lemma 3

Consider the following family of parameterized Lyapunov
functions candidates for the target system’s transport PDE (14)

Lc,n(t) =

∫ D

0

e2ncxw2n(x, t)dx, (105)

for any c > 0 and positive integer n. The time derivative of
Lc,n(t) along (13) and (14) is written as

L̇c,n(t) =

∫ D

0

e2ncx∂tw(x, t)
2ndx,

=2nv (X(t))

∫ D

0

e2ncxw(x, t)2n−1∂xw(x, t)dx
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=− v (X(t))

[
w(0, t)2n + 2nc

∫ D

0

e2ncxw(x, t)2ndx

]
.

(106)

From Assumption 1 it holds that v(X(t)) ≥ v⋆, for all X ∈ R,
and thus, we get from (105), (106) that

L̇c,n(t) ≤− 2ncv⋆Lc,n(t). (107)

Moreover, from (105) it follows that∫ D

0

|w(z, t)|2ndz ≤ Lc,n(t) ≤ e2ncD
∫ D

0

|w(z, t)|2ndz,

(108)

for all t ≥ 0, c > 0, and n ∈ N+. Integrating (107) and using
(108) we get∫ D

0

|w(z, t)|2ndz ≤ e−2ncv⋆(t−s)e2ncD
∫ D

0

|w(z, s)|2ndz,

(109)

for all t ≥ 0, s ≥ 0. From (109) we get(∫ D

0

|w(z, t)|2ndz

) 1
2n

≤e−cv⋆(t−s)ecD

×

(∫ D

0

|w(z, s)|2ndz

) 1
2n

.

(110)

Taking the limit as n→ ∞ and using the fact that

lim
n→∞

(∫ D

0

|w(z, t)|2ndz

) 1
2n

= sup
x∈[0,D]

|w(x, t)| ≡ ∥w(t)∥∞

(111)

from (110) the following holds

sup
x∈[0,D]

|w(x, t)| ≤ e−cv⋆(t−s)ecD

(
sup

x∈[0,D]

|w(x, s)|

)
,

(112)

for all t ≥ s ≥ 0. Based on Assumption 3, there exist some
ν̄ ∈ KL and ᾱ ∈ K∞ such that the solutions of (12) satisfy

|X(t)| ≤ ν̄
(
|X(s)|, t− s

)
+ ᾱ

(
sup

τ∈[s,t]

|w(0, τ)|

)
, (113)

for all t ≥ s ≥ 0. We perform the change of variables s = t
2

and rewrite (113) as

|X(t)| ≤ ν̄

( ∣∣∣∣X ( t2
)∣∣∣∣ , t2

)
+ ᾱ

 sup
τ∈[ t2 ,t]

|w(0, τ)|

 .

(114)

The estimate of
∣∣X ( t2)∣∣ follows by setting s = 0 and

substituting t by t
2 into (113). Hence, the following holds∣∣∣∣X ( t2

)∣∣∣∣ ≤ ν̄

(
|X(0)|, t

2

)
+ ᾱ

(
sup

τ∈[0, t2 ]

|w(0, τ)|

)
. (115)

From (112), we derive the estimates

sup
τ∈[0, t2 ]

∥w(τ)∥∞ ≤ ecD sup
x∈[0,D]

|w0(x)|, (116)

sup
τ∈[ t2 ,t]

∥w(τ)∥∞ ≤ e−
cv⋆
2 tecD sup

x∈[0,D]

|w0(x)|. (117)

Substituting (115) through (117) into (114) and using the fact
that

|w(0, τ)| ≤ sup
x∈[0,D]

|w(x, τ)| (118)

leads to (17) with

ν(r, s) = ν̄
(
ν̄
(
r,
s

2

)
+ ᾱ

(
recD

)
,
s

2

)
+ ᾱ

(
e−

cv⋆
2 srecD

)
+ e−cv⋆srecD. (119)

D. Proof of Lemma 4

Taking the derivative of (9) with respect to x, we get

∂xp(x, t) =
1

v(p(x, t))
f(p(x, t), u(x, t)) (120)

with the boundary condition

p(0, t) = X(t). (121)

Now, considering that 1
v(p(x,t)) > 0, we get the following

relation with the help of (7)

∂C(p(x, t))

∂p

1

v(p(x, t))
f(p(x, t), u(x, t))

≤ 1

v(p(x, t))

(
C(p(x, t)) + µ3(|u(x, t)|)

)
. (122)

Using (120), we arrive at

∂C(p(x, t))

∂x

≤ 1

v(p(x, t))
C(p(x, t)) +

1

v(p(x, t))
µ3(|u(x, t)|). (123)

With the help of (5), inequality (123) yields

∂C(p(x, t))

∂x
≤ 1

v⋆
C(p(x, t)) +

1

v⋆
µ3(|u(x, t)|). (124)

By the comparison principle and relation (121), we obtain

C(p(x, t)) ≤ e
x
v⋆ C(X(t)) +

1

v⋆

∫ x

0

e
x−y
v⋆ µ3(|u(y, t)|) dy,

(125)

which leads to

C(p(x, t)) ≤ e
D
v⋆ C(X(t)) +

(
e

D
v⋆ − 1

)
µ3

(
sup

x∈[0,D]

|u(x, t)|

)
.

(126)

Using (6) the following inequality holds

|p(x, t)| ≤ µ−1
1

(
e

D
v⋆ µ2(|X(t)|) +

(
e

D
v⋆ − 1

)
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× µ3

(
sup

x∈[0,D]

|u(x, t)|

))
, for all x ∈ [0, D]. (127)

Defining

ω̄(s) = µ−1
1

(
e

D
v⋆ µ2(s) +

(
e

D
v⋆ − 1

)
µ3(s)

)
, (128)

the proof is complete.

E. Proof of Lemma 5

Differentiating (16) with respect to x the following ODE is
derived for all x ∈ [0, D]

∂xπ(x, t) =
1

v(π(x, t))
f

(
π(x, t), κ (π(x, t)) + w(x, t)

)
,

(129)
π(0, t) =X(t). (130)

We introduce next the following change of variables

y(x, t) = t+

∫ x

0

dr

v(π(r, t))
, x ∈ [0, D], (131)

where t acts as a parameter. Since the transport velocity v is
assumed to be strictly positive, the function y is monotonically
increasing with respect to x, for each t. Thus, it admits an
inverse defined for each t as x = χ(y, t). Next, we rewrite the
ODE (129), (130) as

1

v(π(χ(y, t), t))
∂yπ(χ(y, t), t) =

1

v(π(χ(y, t), t))

f

(
π(χ(y, t), t), κ (π(χ(y, t), t)) + w(χ(y, t), t)

)
,

(132)
π(0, t) = X(t), (133)

for all y ∈
[
t, t+

∫D

0
dr

v(π(r,t))

]
. Defining the change of

variables

ψ(y, t) = π

(
χ(y, t), t

)
, (134)

ω(y, t) = w

(
χ(y, t), t

)
, (135)

we rewrite (129), (130) in the new coordinates as

∂yψ(y, t) = f

(
ψ(y, t), κ (ψ(y, t)) + ω(y, t)

)
, (136)

ψ(t, t) = X(t). (137)

for all y ∈
[
t, t+

∫D

0
dr

v(π(r,t))

]
. Under Assumption 3, from

(136) we deduce the existence of a class K∞ function ν3 and
a class K function µ6 such that

|ψ(y, t)| ≤ ν3

(
|X(t)|,

∫ D

0

dr

v(π(r, t))

)

+ µ6

(
sup

y∈

[
t,t+

∫ D
0

dr
v(π(r,t))

] |ω(y, t)|),
for all y ∈

[
t, t+

∫D

0
dr

v(π(r,t))

]
. (138)

Then, with the help of (131)–(135), the following inequality
holds

|π(x, t)| ≤ ν3

(
|X(t)|,

∫ D

0

dr

v(π(r, t))

)

+ µ6

(
sup

x∈[0,D]

|ω(x, t)|
)
, (139)

for all x ∈ [0, D]. Knowing that ν3 decreases with respect
to its second argument, using the fact that y(D, t) − t =∫D

0
dr

v(π(r,t)) ≥ 0, the following holds

sup
x∈[0,D]

|π(x, t)| ≤ν3
(
|X(t)|, 0

)
+ µ6

(
sup

x∈[0,D]

|ω(x, t)|
)
. (140)

Finally, using the properties of class K∞ and KL functions,
we get the inequality (19).

APPENDIX B
DELAY SYSTEM REPRESENTATION LEMMAS’ PROOFS

A. Proof of Lemma 6

The proof of Lemma 6 is based on a direct verification
considering that P (ϕ(t)) = X(t).

B. Proof of Lemma 7

By direct verification considering that P (θ) ≡ Π(θ) for all
ϕ(t) ≤ θ ≤ t.

C. Proof of Lemma 8

Based on the input-to-state stability of Ẋ =
f (X,κ(X) + ω) with respect to ω, namely, Assumption 3,
from [47] there exist a smooth function S(X) : Rn → R+

and class K∞ functions α1, α2, α3, such that for any µ > 0

α1(|X|) ≤ S(X) ≤ α2(|X|), (141)
∂S(X)

∂X
f (X,κ(X) + ω))

≤ −µS(X) + α3(|ω|). (142)

Define next for any c > 0 and any positive integer n the
functional

L̄c,n(t) =
1

v⋆

∫ t

ϕ(t)

e2nc(ΦX(θ)+D−ΦX(t))W (θ)2ndθ, (143)

where ΦX is defined in (50).
Taking the derivative of (143) and using (71) we get

˙̄Lc,n(t) =− 1

v⋆

dϕ(t)

dt
e2nc(ΦX(ϕ(t))+D−ΦX(t))W (ϕ(t))2n

− 2nc

v⋆
Φ′

X(t)

∫ t

ϕ(t)

e2nc(ΦX(θ)+D−ΦX(t))W (θ)2ndθ.

(144)

From the implicit definition of the delay in (56), we decuce
the following equality

ϕ̇(t) = 1− dRX(t)

dt
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=
v(X(t))

v(X(ϕ(t))
, (145)

and thus, from Assumption 1 we get that ϕ̇(t) > 0, for all
t ≥ 0. Moreover, from (50) we get the following equality

Φ′
X(t) = v (X(t)) . (146)

Therefore, Assumption 1 enables one to state the following
inequality

˙̄Lc,n(t) ≤ −2ncv⋆L̄c,n(t). (147)

Let us now define for any c > 0 the functional

L̄(t) =
1

v⋆

∫ t

ϕ(t)

ec(ΦX(θ)+D−ΦX(t))γ(|W (θ)|)v(X(θ))dθ,

(148)

for any class K∞ function γ. The derivative of L̄ with respect
to time is written as

˙̄L(t) =− 1

v⋆

dϕ(t)

dt

× ec(ΦX(ϕ(t))+D−ΦX(t))γ (|W (ϕ(t)|) v(X(ϕ(t)))

− c

v⋆
Φ′

X(ϕ(t))

×
∫ t

ϕ(t)

ec(ΦX(θ)+D−ΦX(t))γ (|W (θ)|) v(X(θ))dθ,

(149)

where we use (71). Inserting (146) into (149) and using (145)
we arrive at

˙̄L(t) = −v(X(t))

v⋆
ec(ΦX(ϕ(t))+D−ΦX(t))γ (|W (ϕ(t)|)

− c

v⋆
v(X(t))

∫ t

ϕ(t)

{
ec(ΦX(θ)+D−ΦX(t))

× γ (|W (θ)|) v(X(θ))

}
dθ. (150)

From (5), (55) and (52) we get

˙̄L(t) ≤− γ (|W (ϕ(t)|)− cv⋆L̄(t). (151)

Moreover, defining the functional

V1(t) = S(X(t)) + L̄(t), (152)

whose time derivative along (70) is written as

V̇1(t) =
∂S(X(t))

∂X
f (X(t), κ(X(t)) +W (ϕ(t))) + ˙̄L(t),

(153)

and combining (142) with (143), from (151), we obtain the
following inequality

V̇1(t) ≤ −µS(X(t))− cv⋆L̄(t) + α3(|W (ϕ(t))|)
− γ (|W (ϕ(t))|) . (154)

Choosing γ such that γ(s) ≥ α3(s), for all s ≥ 0, we get

V̇1(t) ≤ −λV1(t), (155)

where

λ = min{µ, cv⋆}. (156)

Let us define the Lyapunov function for the target system
(70) and (71) as

Vn(t) = V1(t)
2n + L̄c,n(t). (157)

Taking the derivative of Vn with the help of (149) and (155)
we get

V̇n(t) ≤ −2nλVn(t). (158)

Therefore,

Vn(t)
1
2n ≤ e−λtVn(0)

1
2n . (159)

It then follows that

V1(t) + L̄c,n(t)
1
2n ≤ 2e−λt

(
V1(0) + L̄c,n(0)

1
2n

)
. (160)

From (143), the following holds

L̄c,n(t)
1
2n =

1

v
1
2n
⋆

(∫ t

ϕ(t)

e2nc(ΦX(θ)+D−ΦX(t))W (θ)2ndθ

) 1
2n

.

(161)

Thus, taking the limit as n→ ∞ of (161) and using the fact
that

lim
n→∞

L̄c,n(t)
1
2n = sup

ϕ(t)≤θ≤t

∣∣∣ec(ΦX(θ)+D−ΦX(t))W (θ)
∣∣∣

≡ ∥W (t)∥c,∞ (162)

we conclude that the following holds

V1(t) + ∥W (t)∥c,∞ ≤ 2e−λt

(
V1(0) + ∥W (0)∥c,∞

)
. (163)

From Asumption 1 and (148) it follows that

L̄(t) ≤ 1

v⋆
sup

ϕ(t)≤θ≤t

∣∣∣∣ec(ΦX(θ)+D−ΦX(t))γ(|W (θ)|)
∣∣∣∣

×
∫ t

ϕ(t)

v(X(θ))dθ. (164)

Using relation (56) and the definition of the supremum norm

∥W (t)∥∞ = sup
ϕ(t)≤θ≤t

∣∣∣W (θ)
∣∣∣, (165)

with the fact that ΦX is an increasing function (that follows
from (50)) we deduce the following estimate

L̄(t) ≤ D

v⋆
ecDγ (∥W (t)∥∞) . (166)

From the definition of V1 in (152), using the facts that

∥W (t)∥∞ ≤ ∥W (t)∥c,∞ ≤ ecD∥W (t)∥∞, (167)

and that S(X(t)) ≤ V1(t), together with (141) and (166) we
get

α1(|X(t)|) + ∥W (t)∥∞ ≤ 2e−λt (α2(|X(0)|)

+
D

v⋆
ecDγ

(
sup

ϕ(0)≤θ≤0

∣∣W (θ)
∣∣)

+ ecD sup
ϕ(0)≤θ≤0

∣∣W (θ)
∣∣) . (168)
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With the properties of comparison functions and the fact that
|X(0)| ≤ supϕ(0)≤s≤0 |X(s)|, we conclude that there exists a
class KL function β2 such that

|X(t)|+ sup
ϕ(t)≤s≤t

|W (s)| ≤ β2

(
sup

ϕ(0)≤s≤0

|X(s)|

+ sup
ϕ(0)≤s≤0

|W (s)|, t
)
. (169)

Next, we upper bound supϕ(t)≤s≤t |X(s)|. From (5) we de-
duce

σ̇(θ) ≤ v(X(θ))

v⋆
. (170)

Integrating (170) on [ϕ(t) , θ] with σ (ϕ(t)) = t, we derive the
inequality

σ(θ)− t ≤ 1

v⋆

∫ θ

ϕ(t)

v(X(λ))dλ, (171)

for all ϕ(t) ≤ θ ≤ t. Since v(X(t)) is a positive function, it
follows that

∫ θ

ϕ(t)
v(X(λ))dλ is an increasing function of θ.

Using the implicit definition of the delay in (56) we get

σ(θ)− t ≤ D

v⋆
, ∀ ϕ(t) ≤ θ ≤ t. (172)

From inequality (172) the following holds

σ(0) ≤ D
v⋆
. (173)

Dividing the time domain into three different intervals the
following estimates are then obtained.

• For 0 ≤ t ≤ σ(0) we have that ϕ(0) ≤ ϕ(t) ≤ 0.
Therefore,

sup
ϕ(t)≤s≤t

|X(s)| ≤ sup
ϕ(0)≤s≤0

|X(s)|+ sup
0≤s≤t

|X(s)|

≤ sup
ϕ(0)≤s≤0

|X(s)|

+ β2

(
sup

ϕ(0)≤s≤0

|X(s)|+ sup
ϕ(0)≤s≤0

|W (s)|, 0

)
. (174)

Thus, there exists a class K∞ function µ5, such that

sup
ϕ(t)≤s≤t

|X(s)| ≤ µ5

(
sup

ϕ(0)≤s≤0

|X(s)|

+ sup
ϕ(0)≤s≤0

|W (s)|
)
. (175)

• For σ(0) ≤ t ≤ D
v⋆

, we have 0 ≤ ϕ(t) ≤ ϕ
(

D
v⋆

)
. Thus,

sup
ϕ(t)≤s≤t

|X(s)| ≤ sup
0≤s≤t

|X(s)| (176)

≤ β2

(
sup

ϕ(0)≤s≤0

|X(s)|

+ sup
ϕ(0)≤s≤0

|W (s)|, 0
)
. (177)

• For t ≥ D
v⋆

, we have from (173) that ϕ(t) ≥ ϕ
(

D
v⋆

)
≥ 0.

Thus, using (169), we arrive at

sup
ϕ(t)≤s≤t

|X(s)| ≤ β2

(
sup

ϕ(0)≤s≤0

|X(s)|

+ sup
ϕ(0)≤s≤0

|W (s)|, ϕ(t)
)
. (178)

and integrating (145) over [t, σ(t)] with the help of (61)
and (5), we get the following inequality

RX(t) ≤ D

v⋆
, ∀t ≥ 0, (179)

we deduce that t − RX(t) ≥ t − D
v⋆

, which leads to the
existence of a class KL function β̄2 such that

sup
ϕ(t)≤s≤t

|X(s)| ≤ β̄2

(
sup

ϕ(0)≤s≤0

|X(s)|

+ sup
ϕ(0)≤s≤0

|W (s)|, t− D

v⋆

)
. (180)

Combining estimates (175), (177), and (180) we deduce the
existence of a class KL function β̄ such that, for all t ≥ 0

sup
ϕ(t)≤s≤t

|X(s)| ≤ β̄

(
sup

ϕ(0)≤s≤0

|X(s)|

+ sup
ϕ(0)≤s≤0

|W (s)|, t
)
. (181)

D. Proof of Lemma 9
Differentiating (58) we deduce the following relation for all

ϕ(t) ≤ θ ≤ t

dP (θ)

dθ
=
v(X(θ))

v(P (θ))
f (P (θ), U(θ)) dθ. (182)

Introducing the change of variables y = σ(θ), (182) may be
rewritten as

dP (ϕ(y))

dy
= f

(
P (ϕ(y)), U (ϕ(y))

)
, (183)

t ≤ y ≤ σ(t).

From Assumption 2, the following holds:
∂C(P (ϕ(y)))

∂y
≤ C(P (ϕ(y))) + µ3

(
|U (ϕ(y)) |

)
. (184)

Using the comparison principle and the facts that P (ϕ(t)) =
X(t) and y = σ(θ) we derive the following inequality

C(P (θ)) ≤ e(σ(θ)−t)

(
C(X(t)) + sup

t≤s≤σ(t)

µ3(|U(ϕ(s))|)
)
,

(185)

for all ϕ(t) ≤ θ ≤ t. Imposing θ = t in (171), we obtain

σ(t)− t ≤ 1

v⋆

∫ t

ϕ(t)

v(X(λ))dλ. (186)

Combining (186) with the implicit definition of the delay in
(56) and using the fact that σ is increasing we get from (185)
that

C(P (θ)) ≤ e
D
v⋆

(
C(X(t)) + sup

ϕ(t)≤θ≤t

µ3(|U(s)|)
)
, (187)

ϕ(t) ≤ θ ≤ t.

With standard properties of class K functions and using (6)
we get (76) where the class K∞ function ρ is written as

ρ(s) = µ−1
1

((
µ2(s) + s

)
e

D
v⋆

)
. (188)
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E. Proof of Lemma 10

Consider the change of variables y = σ(θ) and write the
predictor of the target system (73) as

dΠ(ϕ(y))

dy
= f (Π(ϕ(y)), κ(Π(ϕ(y))) +W (ϕ(y))) ,

t ≤ y ≤ σ(t). (189)

Under Assumption 3 there exist a class KL function β3 and
a class K function ψ1 such that

Π(ϕ(y)) ≤ β3 (|X(t)|, y − t) + ψ1

(
sup

t≤s≤y
|W (ϕ(s))|

)
,

t ≤ y ≤ σ(t). (190)

Using the fact that y = σ(θ) we get

|Π(θ)| ≤ ψ2(|X(t)|) + ψ1

(
sup

t−RX(t)≤s≤t

|W (s)|

)
, (191)

for all t − RX(t) ≤ θ ≤ t with ψ2(s) = β3(s, 0). Using the
properties of class K functions (77) is deduced with ψ(s) =
ψ1(s) + ψ2(s).

F. Proof of Lemma 11

Due to the continuity of κ(.) and the fact that κ(0) = 0,
there exists ρ̂ ∈ K∞ such that

|κ(ξ)| ≤ ρ̂(|ξ|). (192)

Using (192), the inverse transformation (72), and the bound
(77) we derive (78) with

µ4(s) = s+ ρ̂(ψ(s)). (193)

From the direct transformation (69) and the bound (76) we
deduce (79) where ρ1 is define as

ρ1(s) = s+ ρ̂(ρ(s)). (194)
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