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Abstract—This paper develops a control and estimation design
for the one-phase Stefan problem. The Stefan problem represents
a liquid-solid phase transition as time evolution of a temperature
profile in a liquid-solid material and its moving interface. This
physical process is mathematically formulated as a diffusion
partial differential equation (PDE) evolving on a time-varying
spatial domain described by an ordinary differential equation
(ODE). The state-dependency of the moving interface makes the
coupled PDE-ODE system a nonlinear and challenging problem.
We propose a full-state feedback control law, an observer design,
and the associated output feedback control law of both Neumann
and Dirichlet boundary actuations via the backstepping method.
Also, the state-feedback control law is provided when a Robin
boundary input is considered. The designed observer allows
estimation of the temperature profile based on the available
measurements of liquid phase length and the heat flux at the
interface. The associated output feedback controller ensures the
global exponential stability of the estimation errors, the H1-norm
of the distributed temperature, and the moving interface at the
desired setpoint under some explicitly given restrictions on the
setpoint and observer gain.

Index Terms—Stefan problem, backstepping, distributed pa-
rameter systems, moving boundary, nonlinear stabilization.

I. INTRODUCTION

a) Background:

STEFAN problem, known as a thermodynamical model
of liquid-solid phase transition, has been widely studied

since Jeseph Stefan’s work in 1889 [39]. Typical applications
include sea ice melting and freezing [27], [42], continuous
casting of steel [31], crystal-growth [9], thermal energy storage
systems [43], and lithium-ion batteries [38]. For instance, time
evolution of the Arctic sea ice thickness and temperature
profile was modeled in [27] using the Stefan problem, and the
correspondence with the empirical data was investigated. Apart
from the thermodynamical model, the Stefan problem has
been employed to model population dynamics that describes
tumor growth process [13] and information diffusion on social
networks [25].

While phase change phenomena described by the Stefan
condition appear in various kinds of science and engineering
processes, their mathematical analysis remains quite challeng-
ing due to the implicitly given moving interface that reflects
the time evolution of a spatial domain, so-called “free bound-
ary problem” [14]. Physically, the classical one-phase Stefan
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problem describes the temperature profile along a liquid-solid
material, where the dynamics of the liquid-solid interface is
influenced by the heat flux induced by melting or solidification
phenomena. Mathematically, the problem involves a diffusion
partial differential equation (PDE) coupled with an ordinary
differential equation (ODE). Here, the PDE describes the heat
diffusion that provokes melting or solidification of a given
material and the ODE delineates the time-evolution of the
moving front at the liquid-solid interface.

While the numerical analysis of the one-phase Stefan prob-
lem is broadly covered in the literature, their control related
problems have been addressed relatively fewer. In addition
to it, most of the proposed control approaches are based
on finite-dimensional approximations with the assumption of
an explicitly given moving boundary dynamics [10], [1],
[30]. Diffusion-reaction processes with an explicitly known
moving boundary dynamics are investigated in [1] based on
the concept of inertial manifold [7] and the partitioning of
the infinite dimensional dynamics into slow and fast finite
dimensional modes. Motion planning boundary control has
been adopted in [30] to ensure asymptotic stability of a one-
dimensional one-phase nonlinear Stefan problem assuming a
prior known moving boundary and deriving the manipulated
input from the solutions of the inverse problem. However,
the series representation introduced in [30] leads to highly
complex solutions that reduce controller design possibilities.

For control objectives, infinite-dimensional frameworks that
lead to significant challenges in the process characterization
have been developed for the stabilization of the temperature
profile and the moving interface of the Stefan problem. An
enthalpy-based boundary feedback control law that ensures
asymptotical stability of the temperature profile and the mov-
ing boundary at the desired reference, has been employed
in [31]. Lyapunov analysis is performed in [26] based on
a geometric control approach which enables to adjust the
position of a liquid-solid interface to the desired setpoint
while exponentially stabilizing the L2-norm of the distributed
temperature. However, the results in [26] are stated based on
physical assumptions on the liquid temperature being greater
than the melting point, which needs to be guaranteed by
proving strictly positive boundary input.

Backstepping controller design employs an invertible trans-
formation that maps an original system into a stable target
system. During the past few decades, such a controller de-
sign technique has been intensely exploited for the boundary
control of diffusion PDEs defined on a fixed spatial domain
as firstly introduced in [5] for the control of a heat equation
via measurement of domain-average temperature. For a class
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of one-dimensional linear parabolic partial integro-differential
equations, a state-estimator called backstepping observer was
introduced in [34], which can be combined to the earlier state
feedback boundary controller designed for an identical system
[33] to systematically construct output feedback regulators.
Over the same period, reaction-advection-diffusion systems
with space-dependent thermal conductivity or time-dependent
reactivity coefficient were studied in [35], and parabolic
PDEs containing unknown destabilizing parameters affecting
the interior of the domain or unknown boundary parameters
were adaptively controlled in [22], [36], [37] combining the
backstepping control with passive or swapping identifiers.

Results devoted to the backstepping stabilization of coupled
systems described by a diffusion PDE in cascade with a linear
ODE has been primarily presented in [18] with Dirichlet
type of boundary interconnection and extended to Neumann
boundary interconnection in [40], [41]. For systems relevant
with Stefan problem, [15] designed a backstepping output
feedback controller that ensures the exponential stability of
an unstable parabolic PDE on a priori known dynamics of
moving interface which is assumed to be an analytic function
in time. Moreover, for PDE-ODE cascaded systems under a
state-dependent moving boundary, [6] derived a local stability
result for nonlinear ODEs with actuator dynamics governed by
a wave PDE defined on a time- and state-dependent moving
domain. Such a technique is based on the input delay and wave
compensation for nonlinear ODEs designed in [3], [19] and
its extension to state-dependent input delay compensation for
nonlinear ODEs provided by [2]. While the results in [6] and
[2] that cover state-dependence problems do not ensure global
stabilization due to a so-called feasibility condition that needs
to be satisfied a priori, such a restriction was recently unlocked
in [11] which provides a global stability result. However, the
result in [11] is limited to the case of hyperbolic PDE in
cascade with a nonlinear ODE.

b) Results and contributions: Our previous result in [16]
is the first contribution in which global exponential stability of
the Stefan problem with an implicitly given moving interface
motion is established without imposing any a priori given re-
striction under a state feedback design of a Neumann boundary
control, and in [17] we developed the design of an observer-
based output feedback control. This paper extends the results
in [16] and [17] by:

• providing the robustness analysis of the closed-loop sys-
tem to the plant parameters’ mismatch under the state
feedback control,

• introducing a Dirichlet boundary actuation to design the
state feedback, observer-based output feedback, and the
robustness analysis under the state feedback control,

• and considering a Robin boundary actuation for the de-
sign of state feedback control motivated by metal additive
manufacturing.

First, a state feedback control law that requires the mea-
surement of the liquid phase temperature profile and the
moving interface position is constructed using a novel nonlin-
ear backstepping transformation. The proposed state feedback
controller achieves exponential stabilization of the temperature

profile and the moving interface to the desired setpoint in
H1-norm under the least restrictive condition on the setpoint
imposed by energy conservation law. Robustness of the state
feedback controller to thermal diffusivity and latent heat of fu-
sion mismatch is also characterized by explicitly given bounds
of the uncertainties’ magnitude. Second, an exponential sta-
ble state observer which reconstructs the entire distributed
temperature profile based solely on the measurements of the
interface position and the temperature gradient at the interface
is constructed using the novel backstepping transformation.
Finally, combining the state feedback law with the state esti-
mator, the exponential stabilization of the estimation error, the
temperature profile, and the moving interface to the setpoint in
the H1-norm is proved under some explicitly given restrictions
on the observer gain and the setpoint.

For the unperturbed Stefan problem, well-posedness of the
classical solution of the closed-loop system is proved under
the state feedback control via a Neumann boundary actuation.
While well-posedness issues are important to some extents,
due to the fact that the presented results are dedicated to the
design of stabilizing controllers rather than the analysis, the
well-posedness of the closed-loop system is assumed to hold
for the output feedback and the robustness study.

c) Organizations: The one-phase Stefan problem with a
Neumann boundary actuation is presented in Section II, and
its open-loop stability is discussed in Section III. The full-
state feedback controller is constructed in Section IV with
a robustness analysis to parameters’ perturbations. Section
V explains the observer design and Section VI presents the
observer-based output feedback control. In Section VII, both
state feedback and output feedback are derived by considering
a Dirichlet boundary actuation and robustness analysis is
provided for the state feedback case. Section VIII presents the
state feedback control law for a Robin boundary actuation.
Simulations to support the theoretical results are given in
Section IX. The paper ends with final remarks and future
directions in Section X.

d) Notations: Throughout this paper, partial derivatives
and several norms are denoted as

ut(x, t) =
∂u

∂t
(x, t), ux(x, t) =

∂u

∂x
(x, t),

||u||L2
=

√∫ s(t)

0

u(x, t)2dx, ||u||H1
=
√
||u||2L2

+ ||ux||2L2

PART I: NEUMANN BOUNDARY ACTUATION

In this first part, we design a boundary controller for the
Stefan problem with a Neumann boundary actuation.

II. DESCRIPTION OF THE PHYSICAL PROCESS

A. Phase change in a pure material

The one-dimensional Stefan problem is defined as the phys-
ical model which describes the melting or the solidification
mechanism in a pure one-component material of length L in
one dimension as depicted in Fig. 1. The dynamics of the pro-
cess depends strongly on the evolution in time of the moving
interface (here reduced to a point) at which phase transition
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Fig. 1: Schematic of 1D Stefan problem.

from liquid to solid (or equivalently, in the reverse direction)
occurs. Therefore, the melting or solidification mechanism
which takes place in the physical domain [0, L], induces the
existence of two complementary time-varying sub-domains,
namely, [0, s(t)] occupied by the liquid phase, and [s(t), L]
by the solid phase. Assuming a temperature profile uniformly
equivalent to the melting temperature in the solid phase, a
dynamical model associated with the melting phenomenon
(see Fig. 1) involves only the thermal behavior of the liquid
phase. At a fundamental level, the thermal conduction for a
melting component obeys the well known Fourier’s law

q(x, t) = −kTx(x, t), (1)

where q(x, t) is a heat flux profile, k is the thermal conductiv-
ity, and T (x, t) is a temperature profile. Considering a melting
material with a density ρ and heat capacity Cp, in the open
domain (0, s(t)), the local energy conservation law is given
by

ρCpTt(x, t) = −qx(x, t). (2)

Assuming that the temperature in the liquid phase is not lower
than the melting temperature of the material Tm and combining
(1) and (2), one can derive the heat equation of the liquid phase
as follows

Tt(x, t) = αTxx(x, t), 0 ≤ x ≤ s(t), α :=
k

ρCp
, (3)

with the boundary conditions

−kTx(0, t) =qc(t), (4)
T (s(t), t) =Tm, (5)

and the initial conditions

T (x, 0) = T0(x), s(0) = s0, (6)

where qc(t) is a controlled heat flux entering the system at
the boundary x = 0. Moreover, the local energy balance at
the position of the liquid-solid interface x = s(t) leads to the
Stefan condition defined as the following nonlinear ODE

ṡ(t) = −βTx(s(t), t), β :=
k

ρ∆H∗ , (7)

where ∆H∗ denotes the latent heat of fusion. Equation (7)
expresses the velocity of the liquid-solid moving interface.

For the sake of brevity, we refer the readers to [14], where
the Stefan condition is derived for a solidification process.

The classical solution to the Stefan problem and the well-
posedness (existence and uniqueness) were developed in [12]
as stated in Appendix A.

B. Some key properties of the physical model

For a homogeneous melting material, the Stefan problem
presented in Section II exhibits some important properties that
are discussed in the following remarks.

Remark 1. As the moving interface s(t) governed by (7)
is unknown explicitly, the problem defined in (3)–(7) is a
nonlinear problem.

Remark 2. Due to the so-called isothermal interface condi-
tion that prescribes the melting temperature Tm at the interface
through (5), the governing equations (3)–(7) of the Stefan
problem is a reasonable model only if the following condition
holds:

T (x, t) ≥Tm, for all x ∈ [0, s(t)]. (8)

The model is valid if and only if the liquid temperature
is greater than the melting temperature and such a condition
yields the following property on moving interface.

Corollary 1. If the model validity condition (8) holds, then
the moving interface is monotonically nondecreasing, i.e.,

ṡ(t) ≥0, for all t ≥ 0. (9)

Corollary 1 is established using Hopf’s Lemma and a
detailed proof can be found in [14]. Hence, it is plausible
to impose the following assumption on the initial values.

Assumption 1. The initial interface position satisfies s0 > 0
and the Lipschitz continuity of T0(x) holds, i.e.,

0 ≤ T0(x)− Tm ≤ H(s0 − x). (10)

Assumption 1 ensures the weak differentiability of T0(x)
and hence T0(x) ∈ H1

[0,s0]
, which is physically reasonable

and consistent with Remark 2. For the validity of the model
(3)–(7), we recall the following lemma.

Lemma 1. If there is a unique classical solution of (3)–(7),
then for any qc(t) > 0 on the finite time interval (0, t̄), the
condition (8) holds.

The proof of Lemma 1 is based on Maximum principle as
shown in [14]. In this paper, we focus on this melting problem
which requires the positivity of the boundary heat flux.

III. CONTROL PROBLEM AND AN OPEN-LOOP STABILITY

A. Problem statement

The steady-state solution (Teq(x), seq) of the system (3)–(7)
with zero manipulating heat flux qc(t) = 0 yields a uniform
melting temperature Teq(x) = Tm and a constant interface
position given by the initial data. Hence, the system (3)–(7) is
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marginally stable. In this section, we consider the asymptotical
stabilization of the interface position s(t) at a desired refer-
ence setpoint sr, while the equilibrium temperature profile is
maintained at Tm. Thus, the control objective is formulated as

lim
t→∞

s(t) = sr, (11)

lim
t→∞

T (x, t) = Tm. (12)

B. Setpoint restriction by energy conservation principle

The positivity of the manipulated heat flux in Lemma 1
imposes a restriction on the setpoint given that the system
(3)–(7) satisfies an energy conservation that is given by

d

dt

(
k

α

∫ s(t)

0

(T (x, t)− Tm)dx+
k

β
s(t)

)
= qc(t). (13)

The left-hand side of (13) denotes the growth of internal
energy composed of the specific heat and the latent heat, and
its right-hand side denotes the external work provided by the
injected heat flux. Integrating (13) in t from 0 to ∞ and
substituting (11) and (12), one can deduce that the heat flux
qc(t) which drives the system (3)–(7) to the desired setpoint,
satisfies the following relation

k

β
(sr − s0)−

k

α

∫ s0

0

(T0(x)− Tm)dx =

∫ ∞

0

qc(t)dt. (14)

From relation (14), one can deduce that for any positive heat
flux control qc(t) > 0, the internal energy for a given setpoint
must be greater than the initial internal energy. Thus, the
following assumption is required.

Assumption 2. The setpoint sr is chosen to satisfy

sr > s0 +
β

α

∫ s0

0

(T0(x)− Tm)dx. (15)

Therefore, Assumption 2 stands as the least restrictive
condition for the choice of setpoint and can be consequently
viewed as a setpoint restriction.

C. Open-loop setpoint control law

For any given open-loop control law qc(t) satisfying (14),
the asymptotical stability of the system (3)–(7) at sr can be
established and the following lemma holds.

Lemma 2. Consider an open-loop setpoint control law q⋆c (t)
which satisfies (14). Then, the interface converges asymptoti-
cally to the prescribed setpoint sr and consequently, conditions
(11) and (12) hold.

The proof of Lemma 2 can be derived straightforwardly
from (14). To illustrate the introduced concept of open-loop
“energy shaping control” action, we define ∆E as the left-
hand side of (14), i.e.,

∆E =
k

β
(sr − s0)−

k

α

∫ s0

0

(T0(x)− Tm)dx. (16)

For instance, the rectangular pulse control law given by

q⋆c (t) =

{
q̄ for t ∈ [0,∆E/q̄]
0 for t > ∆E/q̄

}
(17)

Fig. 2: Block diagram of the state feedback closed-loop
control.

satisfies (16) for any choice of the boundary heat flux q̄ and
thereby, ensures the asymptotical stability of (3)–(7) to the
setpoint (Tm, sr).

IV. STATE FEEDBACK CONTROL

It is remarkable that adopting an open-loop control strategy
such as the rectangular pulse (17), does not allow to improve
the convergence speed. Moreover, the physical parameters of
the model need to be known accurately. In engineering process,
the practical implementation of an open-loop control is limited
by performance and robustness issues, thus closed-loop control
laws have to be designed to deal with such limitations.

In this section, we focus on the design of closed-loop
backstepping control law for the one-phase Stefan problem in
order to achieve faster exponential convergence to the desired
setpoint (Tm, sr) while ensuring the robustness of the closed-
loop system to the uncertainty of the physical parameters. We
recall that from a physical point of view, for any positive heat
flux qc(t), the irreversibility of the process restrict a priori the
choice of the desired setpoint sr to satisfy (15).

Assuming that the liquid temperature profile T (x, t) and
the position of the moving interface s(t) are measured ∀x ∈
[0, s(t)] and ∀t ≥ 0, the following theorem holds:

Theorem 1. Consider a closed-loop system consisting of the
plant (3)–(7) and the control law

qc(t) = −c

(
k

α

∫ s(t)

0

(T (x, t)− Tm)dx+
k

β
(s(t)− sr)

)
,

(18)

where c > 0 is an arbitrary controller gain. Let Assumption 1
and Assumption 2 hold, and assume that the initial conditions
(T0(x), s0) are compatible with the control law. Then, the
closed-loop system has a unique classical solution, which
satisfies the model validity condition (8), and is exponentially
stable in the sense of the norm

||T − Tm||2H1
+ (s(t)− sr)

2. (19)

The proof of Theorem 1 is established by following steps:

• A backstepping transformation for moving boundary
PDEs and the associated inverse transformation are con-
structed for a reference error system (see Section IV-A).

• Physical constraints that guarantee the positivity of the
boundary heat flux under closed-loop control are derived
(see Section IV-B).
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• The stability analysis of the target system that induces
the stability of the original reference error system is
performed (see Section IV-C).

A. Backstepping transformation for moving boundary PDEs

1) Reference error system: For a given reference setpoint
(Tm, sr), we define the reference errors as

u(x, t) = T (x, t)− Tm, X(t) = s(t)− sr, (20)

respectively. Then, the reference error system associated with
the coupled system (3)–(7) is written as

ut(x, t) =αuxx(x, t), 0 ≤ x ≤ s(t), (21)
−kux(0, t) =qc(t), (22)
u(s(t), t) =0, (23)

Ẋ(t) =− βux(s(t), t). (24)

2) Direct transformation: Next, we introduce the following
backstepping transformation 1

w(x, t) =u(x, t)− β

α

∫ s(t)

x

ϕ(x− y)u(y, t)dy

− ϕ(x− s(t))X(t), (25)

ϕ(x) =
c

β
x, (26)

which transforms system (21)–(24) into the following

wt(x, t) =αwxx(x, t) +
c

β
ṡ(t)X(t), (27)

wx(0, t) =0, (28)
w(s(t), t) =0, (29)

Ẋ(t) =− cX(t)− βwx(s(t), t). (30)

The derivation of the explicit gain kernel function (26) is given
in Appendix B-1.

3) Inverse transformation: The inverse transformation of
(25) is given by

u(x, t) =w(x, t) +
β

α

∫ s(t)

x

ψ(x− y)w(y, t)dy

+ ψ(x− s(t))X(t), (31)

ψ(x) =
c

β

√
α

c
sin

(√
c

α
x

)
. (32)

As for the direct transformation, the derivation of the inverse
transformation (31) is detailed in Appendix B-2.

Remark 3. Replacing s(t) with X(t) + sr in the transforma-
tions (25) and (31), one can easily see that the transformations
(25) and (31) are nonlinear.

The nonlinearity of the direct and inverse transformations
implies that the stability properties of (u,X)-system and
(w,X)-system are equivalent only if both transformations are
bounded, which is shown in Appendix C-2.

1The transformation (25) is an extension of the one initially introduced in
[18], and lately employed in [40], [41] considering the moving boundary.

B. Physical constraints

As stated in Remark 2 and Lemma 1, a strictly positive
heat flux qc(t) is required not to violate the condition of the
model validity (8). Based on the aforementioned condition and
knowing that the moving interface dynamics is monotonically
nondecreasing (9), the interface s(t) cannot exceed the refer-
ence setpoint sr, namely, the stabilization has to be realized
without overshoots. In this section, we establish that the state
feedback control law (18) achieves the control objective (11)
and (12), while satisfying the following “physical constraints”

qc(t) >0, ∀t > 0 (33)
s0 <s(t) < sr, ∀t > 0 (34)

Proposition 1. Under Assumption 2, the closed-loop re-
sponses of the plant (3)–(7) with the control law (18) has a
unique classical solution and satisfies the physical constraints
(33) and (34), and hence, conditions (8) and (9) hold.

Proof: Taking the time derivative of (18) along the
solution of (3)–(7), we have

q̇c(t) = −cqc(t). (35)

Solving (35) leads to

qc(t) = qc(0)e
−ct. (36)

Since the setpoint restriction (15) implies qc(0) > 0, the
closed-loop solution of (3)–(7) with the control law (18) is
equivalent to the solution of (3)–(7) with the control law (36)
that is strictly positive and continuously differentiable. Hence,
using Lemma 8 in Appendix A, one can deduce that the
closed-loop system has a unique classical solution. Then, using
Lemma 1 and Corollary 1, conditions (8) and (9) are satisfied.
Applying (33) and (8) to the control law (18), we obtain
s(t) < sr, ∀t > 0. In addition, (9) implies that s0 < s(t).
Combining these two later inequalities leads to (34).

Remark 4. The proposed control law (18) is applicable when
the system is subject to input and state constraints by restrict-
ing the controller gain c appropriately. For instance, if the heat
flux is subject to the saturation constraint 0 ≤ qc(t) ≤ qmax,
by setting the gain of (18) as 0 < c ≤ qmax

∆E , where ∆E
is defined by (16), a practically implementable controller
is constructed. Also, by virtue of Maximum principle, the
bounded input yields an estimate of the temperature profile
as T (x, t)−Tm ≤ K(s(t)−x), ∀x ∈ (0, s(t)), ∀t > 0, where
K = max{H, c∆E/k} and H is defined in (10). Hence, under
the state constraint Tm ≤ T (x, t) ≤ Tb where Tb is the upper
bound of the temperature (physically, Tb can be viewed as a
boiling temperature), by setting 0 < c ≤ k(Tb − Tm)/∆Esr,
the closed-loop system satisfies the state constraint.

In the next section, the inequalities (9) and (34) are used to
establish the Lyapunov stability of the target system (27)–(30).

C. Stability analysis

In the following, we establish the exponential stability of the
closed-loop control system consisting of (3)–(7) together with
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(18), with respect to the H1-norm of the temperature and the
moving boundary based on the analysis of the target system
(27)–(30). We consider a functional

V =
1

2
||w||2H1

+
p

2
X(t)2, (37)

where p = cα
4β2sr

. Taking the time derivative of (37) along the
solution of the target system (27)–(30) and applying Young’s,
Cauchy-Schwarz, Poincare’s and Agmon’s inequalities, with
the help of (9) and (34), we have

V̇ ≤− bV + aṡ(t)V, (38)

where a = max
{
s2r ,

8src
α

}
, b = min

{
α
4s2r
, c
}

. The detailed
derivation of (38) is given in Appendix C-1.

However, the second term of the right-hand side of (38)
does not enable to directly conclude the exponential stability.
To deal with it, we introduce a new Lyapunov function W
such that

W = V e−as(t). (39)

The time derivative of (39) is written as

Ẇ =
(
V̇ − aṡ(t)V

)
e−as(t), (40)

and using (38) the following estimate can be deduced

Ẇ ≤ −bW. (41)

Hence, W (t) ≤W (0)e−bt, and using (34) and (39), we obtain

V (t) ≤ easrV (0)e−bt. (42)

From the definition of V in (37) the following holds

||w||2H1
+ pX(t)2 ≤ easr

(
||w0||2H1

+ pX(0)2
)
e−bt. (43)

Finally, with the help of (34), the direct transformation (25)–
(26) and its associated inverse transformation (31)–(32) com-
bined with Young’s and Cauchy-Schwarz inequalities, enable
to state the existence of a positive constant D > 0 such that

||u||2H1
+X(t)2 ≤ D

(
||u0||2H1

+X(0)2
)
e−bt, (44)

which completes the proof of Theorem 1. The detailed deriva-
tion of (44) from (43) is provided in Appendix C-2.

Hereafter, we assume the compatibility condition between
the initial data of the plant and the controller and the well-
posedness of the classical solution of the closed-loop system.

Next, we show the robustness of the closed-loop system.

D. Robustness to parameters’ uncertainty

In this section, we prove the robustness of the controller (18)
when the plant’s parameters α and β are likely not determin-
istically known. In other words, we account for perturbations
caused by uncertainties of the thermal diffusivity and the latent
heat of fusion. Hence, we consider the following closed-loop
system

Tt(x, t) =α(1 + ε1)Txx(x, t), 0 ≤ x ≤ s(t), (45)
−kTx(0, t) =qc(t), (46)

T (s(t), t) =Tm, (47)
ṡ(t) =− β(1 + ε2)Tx(s(t), t), (48)

with the control law (18), where ε1 and ε2 are parameters’
perturbation such that ε1 > −1 and ε2 > −1.

Theorem 2. Consider a closed-loop system (45)–(48) and the
control law (18) under Assumption 1 and 2. Then, for any pair
of perturbation (ε1, ε2) such that ε1 ≥ ε2 and for any control
gain c satisfying 0 < c ≤ c∗ where

c∗ =

(
3

10

)1/4
α

8s2r

1 + ε1
ε1 − ε2

, (49)

the closed-loop system is exponentially stable in the sense of
the H1 norm (19).

Proof: Using the backstepping transformation (25), the
target system associated to (45)–(48) is defined as follows

wt(x, t) =α(1 + ε1)wxx(x, t) +
c

β
ṡ(t)X(t)

+
c

β

ε1 − ε2
1 + ε2

ṡ(t)(x− s(t)), (50)

w(s(t), t) =0, wx(0, t) = 0, (51)

Ẋ(t) =− c(1 + ε2)X(t)− β(1 + ε2)wx(s(t), t). (52)

Next, we prove that the control law (18) applied to the
perturbed system (45)–(48), satisfies (33) and (34). Taking the
time derivative of (18) along with (45)–(48), we arrive at

q̇c(t) = −c(1 + ε1)qc(t)− ck (ε1 − ε2)ux(s(t), t). (53)

The positivity of the control law (18) applied to the perturbed
system (45)–(48) can be shown using a contradiction argu-
ment. Assume that there exists t1 > 0 such that qc(t) > 0,
∀t ∈ (0, t1) and qc(t1) = 0. Then, Lemma 1 and Hopf’s
Lemma leads to ux(s(t), t) < 0, ∀t ∈ (0, t1). Since ε1 ≥ ε2,
(53) implies that

q̇c(t) ≥ −c(1 + ε1)qc(t), ∀t ∈ (0, t1). (54)

Using comparison principle, (54) and Assumption 2 leads to
qc(t1) ≥ qc(0)e

−c(1+ε1)t1 > 0. Thus qc(t1) ̸= 0 which is in
contradiction with the assumption qc(t1) = 0. Consequently,
(33) holds by this contradiction argument. Accordingly, (34)
is established using (33) and the control law (18).

Now, consider a functional

Vε =
d

2
||w||2L2

+
1

2
||wx||2L2

+
p

2
X(t)2, (55)

where the parameters d and p are chosen as p = cα(1+ε1)
8sr(1+ε2)β2 ,

d =
160s2r c

2(ε1−ε2)
2

α2(1+ε1)2
. Taking the time derivative of (55) along

the solution of (50)–(52) and applying the Young’s, Cauchy-
Schwarz, Poincare’s and Agmon’s inequalities, we get

V̇ε ≤− d

(
α(1 + ε1)

4

)
||wx||2L2

− α(1 + ε1)

12

(
4−

( c
c∗

)4)
||wxx||2L2
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− c2

β2

α(1 + ε1)

64sr

(
2−

( c
c∗

)4)
X(t)2

+ ṡ(t)

{
d2s2r ||w||2L2

+
c2

β2
X(t)2

}
. (56)

From (56) we deduce that for all 0 < c < c∗, there exists
positive parameters a > 0 and b > 0 such that

V̇ε ≤− bVε + aṡ(t)Vε. (57)

The exponential stability of the target system (50)–(52) can
be straightforwardly established following the proof procedure
used in (39)–(43), which completes the proof of Theorem 2.

V. STATE ESTIMATION DESIGN

A. Problem statement and main result

The computation of the controller (18) requires the mea-
surement of both the distributed temperature profile T (x, t)
along the domain (0, s(t)) and the moving interface position
s(t), which relatively limits its practical relevance. With the
aim of designing an output feedback control law that requires
fewer measurements, we derive an estimator of the temperature
profile based only on the measurements of moving interface
position s(t) and the temperature gradient at the interface
Tx(s(t), t). Denoting the estimates of the temperature T̂ (x, t),
the following theorem holds:

Theorem 3. Consider the plant (3)–(7) with the measurements
Y1(t) = s(t), Y2(t) = Tx(s(t), t), and the following observer

T̂t(x, t) =αT̂xx(x, t)

+ p1(x, Y1(t))
(
Y2(t)− T̂x(Y1(t), t)

)
, (58)

−kT̂x(0, t) =qc(t), (59)

T̂ (Y1(t), t) =Tm, (60)

where x ∈ [0, Y1(t)], and the observer gain p1(x, Y1(t)) is

p1(x, Y1(t)) = −λY1(t)
I1

(√
λ
α (Y1(t)2 − x2)

)
√

λ
α (Y1(t)2 − x2)

, (61)

with a gain parameter λ > 0. Assume that the two physical
constraints (33) and (34) are satisfied. Then, for all λ > 0,
the observer error system has a unique classical solution and
is exponentially stable in the sense of the norm

||T − T̂ ||2H1
. (62)

Since the observer PDE (58)–(60) is a cascaded system of
the plant PDE-ODE (3)–(7), the observer state T̂ (x, t) admits a
classical solution only if the plant states (T (x, t), s(t)) admits
a classical solution.

The proof of Theorem 3 is established later in Section V.

B. Observer design and backstepping transformation

1) Observer design and observer error system: For the
reference error system, namely, the u-system (21)–(24), we

consider the following observer:

ût(x, t) =αûxx(x, t)

+ p1(x, Y1(t)) (Y2(t)− ûx(Y1(t), t)) , (63)
û(Y1(t), t) =0, (64)
−kûx(0, t) =qc(t), (65)

where p1(x, Y1(t)) is the observer gain to be determined. Let
ũ(x, t) be the estimation error of the u-system defined as

ũ(x, t) = u(x, t)− û(x, t). (66)

Combining (21)–(24) with (63)–(65) where Y1(t) = s(t), the
ũ-system is written as

ũt(x, t) =αũxx(x, t)− p1(x, s(t))ũx(s(t), t), (67)
ũ(s(t), t) =0, ũx(0, t) = 0. (68)

2) Direct transformation: As for the full-state feedback
case, the following backstepping transformation for moving
boundary PDEs

ũ(x, t) =w̃(x, t) +

∫ s(t)

x

P (x, y)w̃(y, t)dy, (69)

is constructed to convert the following exponentially stable
target system

w̃t(x, t) =αw̃xx(x, t)− λw̃(x, t), (70)
w̃(s(t), t) =0, w̃x(0, t) = 0. (71)

into the ũ-system (67), (68). Taking the derivative of (69) with
respect to t and x along the solution of (70), (71), respectively,
for any continuous function w̃(x, t), the gain kernel P (x, y)
and the observer gain λ must satisfy the following PDE

Pxx(x, y)−Pyy(x, y) +
λ

α
P (x, y) = 0, (72)

P (x, x) =
λ

2α
x, Px(0, y) = 0, (73)

p1(x, s(t)) =− αP (x, s(t)), (74)

in order to map (67)–(68) into (70), (71). The solution to (72)–
(73) is written as

P (x, y) =
λ

α
y

I1

(√
λ
α (y

2 − x2)

)
√

λ
α (y

2 − x2)
, (75)

where I1(x) is a modified Bessel function of the first kind.
Finally, using (74), the observer gain (61) is derived.

3) Inverse transformation : The inverse transformation that
maps the w̃-system (70), (71) into the ũ-system (67), (68) is
written as

w̃(x, t) =ũ(x, t)−
∫ s(t)

x

Q(x, y)ũ(y, t)dy, (76)

where the gain kernel Q(x, y) satisfies

Qxx(x, y)−Qyy(x, y)−
λ

α
Q(x, y) = 0, (77)
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Q(x, x) =
λ

2α
x, Qx(0, y) = 0. (78)

The solution to (77), (78) is written as

Q(x, y) =
λ

α
y

J1

(√
λ
α (y

2 − x2)

)
√

λ
α (y

2 − x2)
, (79)

where J1(x) is a Bessel function of the first kind.

C. Stability analysis

To show the stability of the target w̃-system (70), (71), we
consider a functional

Ṽ =
1

2
||w̃||2H1

. (80)

Taking the time derivative of (80) along the solution of (70),
(71) leads to

˙̃V = −α||w̃x||2H1
− λ||w̃||2H1

− ṡ(t)

2
w̃x(s(t), t)

2. (81)

Using (33) and applying Poincare’s inequality, the following
differential inequality in Ṽ is derived

˙̃V ≤ −
(
α

4s2r
+ λ

)
Ṽ . (82)

Hence, the origin of the target w̃-system (70), (71) is exponen-
tially stable. Since the the inverse of the transformation (69) is
given by (76), the exponential stability of the target w̃-system
at the origin induces the exponential stability of the original
ũ-system (67), (68) at the origin, with the help of (34), which
completes the proof of Theorem 3.

VI. OBSERVER-BASED OUTPUT FEEDBACK CONTROL

An output feedback control law is constructed using the
reconstruction of the estimated temperature profile through the
exponentially convergent observer (58)–(60) with the measure-
ments as shown in Fig. 3 and the following theorem holds:

Theorem 4. Consider the closed-loop system (3)–(7) with
the measurements Y1(t) = s(t), Y2(t) = Tx(s(t), t), and the
observer (58)–(60) under the output feedback control law

qc(t) =− c

(
k

α

∫ s(t)

0

(
T̂ (x, t)− Tm

)
dx+

k

β
(s(t)− sr)

)
.

(83)

Under Assumption 1 and assuming that the Lipschitz constant
H in (10) is known, for any initial temperature estimation
T̂0(x), any gain parameter of the observer λ, and any setpoint
sr satisfying

Tm + Ĥl(s0 − x) ≤T̂0(x) ≤ Tm + Ĥu(s0 − x), (84)

λ <
4α

s20

Ĥl −H

Ĥu

, (85)

sr >s0 +
βs20
2α

Ĥu, (86)

Fig. 3: Block diagram of observer design and output feedback.

respectively, where the parameters Ĥu and Ĥl satisfy Ĥu ≥
Ĥl > H , the closed-loop system is exponentially stable in the
sense of the norm

||T − T̂ ||2H1
+ ||T − Tm||2H1

+ (s(t)− sr)
2. (87)

The proof of Theorem 4 is derived by

• introducing a backstepping transformation and the asso-
ciated target system,

• verifying the constraints (33) and (34),
• and establishing the Lyapunov stability proof.

A. Backstepping transformation

By equivalence, the transformation of the variables (û, X)
into (ŵ,X) is performed using the gain kernel functions of
backstepping transformation (25). Thus,

ŵ(x, t) =û(x, t)− c

α

∫ s(t)

x

(x− y)û(y, t)dy

− c

β
(x− s(t))X(t). (88)

Taking the derivatives of (88) with respect to x and t along
with the solution of (63)–(65) with the help of the transfor-
mation (69), the associated target system is obtained by

ŵt(x, t) =αŵxx(x, t) +
c

β
ṡ(t)X(t)

+ f(x, s(t))w̃x(s(t), t), (89)
ŵ(s(t), t) =0, ŵx(0, t) = 0, (90)

Ẋ(t) =− cX(t)− βŵx(s(t), t)− βw̃x(s(t), t), (91)

where f(x, s(t)) = P (x, s(t))− c
α

∫ s(t)

x
(x−y)P (y, s(t))dy−

c(s(t)−x). Evaluating the spatial derivative of (88) at x = 0,
we derive the output feedback controller as

qc(t) = −ck

(
1

α

∫ s(t)

0

û(x, t)dx+
1

β
X(t)

)
. (92)

Following the procedure provided in Appendix B, the inverse
transformation

û(x, t) =ŵ(x, t) +
β

α

∫ s(t)

x

ψ(x− y)ŵ(y, t)dy

+ ψ(x− s(t))X(t), (93)

where the gain kernel (32) can be derived.
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B. Physical constraints

In this section, we derive sufficient conditions to guarantee
that the physical constraints (33) and (34) are not violated
when the output feedback control law (92) is applied to the
plant. First, we state the following lemma.

Lemma 3. Suppose that w̃(0, t) < 0. Then, the solution to
(70), (71) satisfies w̃(x, t) < 0, ∀x ∈ (0, s(t)), ∀t > 0.

The proof of Lemma 3 is constructed using the maximum
principle [29]. Next, we state the following lemma.

Lemma 4. For any initial temperature estimate T̂0(x) and
any observer gain parameter λ satisfying (84) and (85),
respectively, the following properties hold:

ũ(x, t) < 0, ũx(s(t), t) > 0, ∀x ∈ (0, s(t)), ∀t > 0. (94)

Proof: Lemma 3 states that if w̃(x, 0) < 0, then w̃(x, t) <
0. In addition, from (69), w̃(x, t) < 0 leads to ũ(x, t) < 0
due to the positivity of the solution to the gain kernel (75).
Therefore, with the help of (76), we deduce that ũ(x, t) < 0
if the following holds

ũ(x, 0) <

∫ s0

x

Q(x, y)ũ(y, 0)dy, ∀x ∈ (0, s0). (95)

Considering the bound of the solution (79) under the condition
(84), the sufficient condition for (95) to hold is given by
(85), which restricts the gain λ. Thus, we have shown that
conditions (84) and (85) lead to ũ(x, t) < 0, ∀x ∈ (0, s(t)),
∀t > 0. In addition, from the boundary condition (68) and
Hopf’s lemma, it follows that ũx(s(t), t) > 0.

The final step is to prove that the output feedback closed-
loop system satisfies the physical constraints (33).

Proposition 2. Suppose the initial values T̂0(x) and s0 satisfy
(84) and the setpoint sr is chosen to satisfy (86). Then, the
physical constraints (33) and (34) are satisfied by the closed-
loop system consisting of the plant (3)–(7), the observer (58)–
(60) and the output feedback control law (83).

Proof: Taking the time derivative of (92) along with the
solution (63)–(65), with the help of the observer gain (74), we
derive the following differential equation:

q̇c(t) = −cqc(t) +

(
1 +

∫ s(t)

0

P (x, s(t))dx

)
ũx(s(t), t).

(96)

From the positivity of the solution (75) and the Neumann
boundary value (94), the following differential inequality holds

q̇c(t) ≥ −cqc(t). (97)

Hence, if the initial values satisfy qc(0) > 0, equivalently (86)
is satisfied from (92) and (84), we get

qc(t) > 0, ∀t > 0. (98)

Then, using (94) given in Lemma 4 and the positivity of u(x, t)

(see Lemma 1), the following inequality is established:

û(x, t) > 0, ∀x ∈ (0, s(t)), ∀t > 0. (99)

Finally, substituting the inequalities (98) and (99) into (92),
we arrive at X(t) < 0, ∀t > 0, which guarantees that the
second physical constraint (34) is satisfied.

C. Stability analysis

We consider a functional

V̂ =
1

2
||ŵ||2H1

+
p

2
X(t)2 + dṼ , (100)

where Ṽ is defined in (80), d > 0 is chosen to be large enough,
and p > 0 is appropriately selected. Taking the time derivative
of (80) along the solution of (89)–(91), and applying Young’s,
Cauchy-Schwarz, Poincare’s, and Agmon’s inequalities, with
the help of (33) and (34), the following holds:

˙̂
V ≤− bV̂ + aṡ(t)V̂ , (101)

where, a = max
{
s2r ,

16csr
α

}
, b = min

{
α
8s2r
, c, 2λ

}
. Hence,

the origin of the (ŵ,X, w̃)-system is exponentially stable.
Since the inverse of the direct transformations (69) and (88) are
given by (76) and (93), respectively, the exponential stability
of (ŵ,X, w̃)-system guarantees the exponential stability of
(û, X, ũ)-system, which completes the proof of Theorem 4.

PART II: DIRICHLET AND ROBIN BOUNDARY ACTUATION

In PART I, a Neumann boundary actuation has been con-
sidered to design state and output feedback controllers. In this
part, we focus on Dirichlet and Robin boundary actuations.

VII. DIRICHLET BOUNDARY ACTUATION

Some actuators such as a thermo-electric cooler require the
direct controlling of the temperature at the boundary, which
corresponds to a Dirichlet boundary control problem [4]. In
this section, backstepping feedback control laws for the one-
phase Stefan problem are constructed upon the boundary tem-
perature actuation. We define the control problem consisting
of the following system with the initial conditions (6):

Tt(x, t) =αTxx(x, t), 0 ≤ x ≤ s(t), (102)
T (0, t) =Tc(t) + Tm, (103)

T (s(t), t) =Tm, (104)
ṡ(t) =− βTx(s(t), t), (105)

where Tc(t) is a controlled temperature relative to the melting
temperature. Analogously to Lemma 1, the following lemma
is stated.

Lemma 5. If there is a unique classical solution to (102)–
(105), then for any Tc(t) > 0 on the finite time interval (0, t̄),
the condition (8) holds.

Similarly to Lemma 1, the proof of Lemma 5 is based on
Maximum principle [29]. Therefore, the following condition
is required to hold as a physical constraint

Tc(t) > 0, ∀t > 0. (106)
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A. Setpoint restriction

For boundary temperature control, the conservation law
obeys the following equation

d

dt

(
1

α

∫ s(t)

0

x(T (x, t)− Tm)dx+
1

2β
s(t)2

)
= Tc(t).

(107)

Considering the same control objective as in Section III, taking
the limit of (107) from 0 to ∞ yields

∆E =

∫ ∞

0

Tc(t)dt, (108)

where ∆E := 1
2β (s

2
r − s20)− 1

α

∫ s0
0
x(T0(x)−Tm)dx. Hence,

by imposing the physical constraint (106), the least restrictive
condition for the choice of setpoint is derived, and the open-
loop stabilization is presented in the following.

Lemma 6. Consider an open-loop setpoint control law T ⋆
c (t)

which satisfies (108). Then, for any setpoint sr satisfying

sr >

√
s20 +

2β

α

∫ s0

0

x(T0(x)− Tm)dx, (109)

the control objectives (11) and (12) are satsified.

As in Section III-C, a simple rectangular pulse input
achieves (11) and (12). Such a control action given by

T ⋆
c (t) =

{
T̄ for t ∈ [0,∆E/T̄ ]
0 for t > ∆E/T̄

}
, (110)

can be viewed as an open-loop “energy shaping” kind of
approach.

B. State feedback controller design

Firstly, we suppose that the physical parameters are known
and state the following theorem.

Theorem 5. Consider a closed-loop system consisting of the
plant (102)–(105) and the control law

Tc(t) = −c

(
1

α

∫ s(t)

0

x (T (x, t)− Tm) dx

+
1

β
s(t) (s(t)− sr)

)
, (111)

where c > 0 is the controller gain under Assumption 1. Then,
for any reference setpoint sr and control gain c which satisfy

sr >s0 +
β

α

∫ s0

0

x

s0
(T0(x)− Tm)dx, (112)

c ≤ α

2
√
2sr

, (113)

respectively, the closed-loop system is exponentially stable in
the sense of the norm (19).

Proof: The backstepping transformation (25) leads to the
following target system

wt(x, t) =αwxx(x, t) +
c

β
ṡ(t)X(t), (114)

w(s(t), t) =0, w(0, t) = 0, (115)

Ẋ(t) =− cX(t)− βwx(s(t), t) (116)

and the control law (111). Next, we show that the physical
constraints (106) and (34) are insured if (112) holds. Taking
the time derivative of (111), we have

Ṫc(t) = −cTc(t)−
c

β
ṡ(t)X(t). (117)

Assume that ∃t2 such that Tc(t) > 0, ∀t ∈ (0, t2) and
Tc(t2) = 0. Then, by Maximum principle, we get u(x, t) > 0
and ṡ(t) > 0 for ∀t ∈ (0, t2). Hence, s(t) > s0 > 0. Applying
these inequalities to (111), we deduce X(t) < 0, ∀t ∈
(0, t2). Hence, (117) verifies the differential inequality Ṫc(t) >
−cTc(t), ∀t ∈ (0, t2). Comparison principle and (112) yield
Tc(t2) > Tc(0)e

−ct2 > 0 in contradiction to Tc(t2) = 0.
Therefore, ∄t2 such that Tc(t) > 0 for ∀t ∈ (0, t2) and
Tc(t2) = 0, which implies Tc(t) > 0, ∀t > 0 assuming (112).
Finally, we consider a functional

V =
d

2
||w||2L2

+
1

2
||wx||2L2

+
p

2
X(t)2. (118)

With an appropriate choice of the positive parameters d and
p, the time derivative of (118) yields

V̇ ≤−
(α
2
−

√
2csr

)
||wxx||2 −

dα

2(4s2r + 1)
||w||2H1

− αc2

4β2
X(t)2 + ṡ(t)

(
c2

β2
X(t)2 +

d2s2r
2

||w||2
)
. (119)

Thus, choosing the controller gain to satisfy (113), it can be
verified that there exist positive constants b and a such that

V̇ ≤− bV + aṡ(t)V. (120)

Similarly, in the Neumann boundary actuation case, under the
physical constraint (106), the exponential stability of the target
system (114)–(116) can be established, which completes the
proof of Theorem 5.

C. Robustness to parameters’ uncertainty

Next, we investigate the controller (111) to perturbations
on the plant’s physical parameters α and β, considering the
following perturbed system

Tt(x, t) =α(1 + ε1)Txx(x, t), 0 ≤ x ≤ s(t), (121)
T (0, t) =Tc(t) + Tm, (122)

T (s(t), t) =Tm, (123)
ṡ(t) =− β(1 + ε2)Tx(s(t), t) (124)

where ε1 and ε2 are perturbation parameters such that ε1 > −1
and ε2 > −1.

Theorem 6. Consider the closed-loop system consisting of
the plant (121)–(124) and the control law (111) under the
assumption on (112) to hold. Then, for any perturbations
(ε1, ε2) which satisfy ε1 ≥ ε2, there exists c̄∗ > 0 such that
for all controller gain c satisfying 0 < c ≤ c̄∗, the closed-loop
system is exponentially stable in the sense of the norm (19).
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Proof: Note that the transformation (25)–(26) and the
system described by (45), (47) and (48) are identical to the
ones considered in Section IV-D. Moreover, only the boundary
condition of the target system (50)–(52) at x = 0 is set
to w(0, t) = 0, in order to match the temperature control
problem.

Taking the time derivative of (111) along the system (45),
(47)–(48), with the boundary condition (103), we obtain

Ṫc(t) =− c(1 + ε1)Tc(t)−
c

β
ṡ(t)X(t)

− c(ε1 − ε2)ux(s(t), t). (125)

Thus, the inequality ε1 ≥ ε2 enables to state the positivity of
the controller Tc(t) > 0 and the physical constraints (106) and
(34) are verified.

Finally, we consider the functional defined in (55). With an
appropriate choice of d and p and imposing c < c1 where
c1 := α(1+ε2)

2
√
2sr

, we have

V̇ε ≤− dα(1 + ε1)

4
||wx||2L2

− α(1 + ε1)

8

(
2−Ac3

)
||wxx||2L2

− c2α(1 + ε1)

32β2sr

(
2−Ac3 −Bc

)
X(t)2

+ ṡ(t)

{
d2s2r ||w||2L2

+
c2

β2
X(t)2

}
. (126)

where A =
29

√
2s6r (1+sr)(ε1−ε2)

2

3α3(1+ε1)2(1+ε2)
, B =

16
√
2s2r

α(1+ε2)
. Let c2 be a

positive root of Ac32 + Bc2 = 1. Then, for 0 < ∀c < c̄∗ :=
min{c1, c2}, there exists positive constants ā and b̄ which
verifies V̇ε ≤ −b̄Vε + āṡ(t)Vε, which concludes Theorem 6.

D. Observer and output feedback control design

With respect to the boundary temperature control introduced
in Section VII instead of the heat control, the observer design
is replaced by the following.

Corollary 2. Consider the plant (102)–(105), measurements
Y1(t) = s(t), Y2(t) = Tx(s(t), t), and the following observer

T̂t(x, t) =αT̂xx(x, t)

+ p2(x, Y1(t))
(
Y2(t)− T̂x(Y1(t), t)

)
, (127)

T̂ (0, t) =Tc(t) + Tm, (128)

T̂ (Y1(t), t) =Tm, (129)

where x ∈ [0, Y1(t)], and the observer gain p2(x, Y1(t)) is

p2(x, Y1(t)) = −λx
I1

(√
λ
α (Y1(t)2 − x2)

)
√

λ
α (Y1(t)2 − x2)

(130)

with an observer gain λ > 0. Assume that the two physical
constraints (106) and (34) are satisfied. Then, for all λ > 0,
the observer error system has a unique classical solution and
is exponentially stable in the sense of the norm (62).

The corresponding output feedback controller is designed
using the state observer (127)–(130).

Corollary 3. Consider the closed-loop system consisting of
the plant (102)–(105), the measurements Y1(t) = s(t) and
Y2(t) = Tx(s(t), t), the observer (127)–(129), and the output
feedback control law

Tc(t) = −c

(
1

α

∫ Y1(t)

0

x
(
T̂ (x, t)− Tm

)
dx

+
1

β
Y1(t) (Y1(t)− sr)

)
. (131)

With c, T̂0(x), λ satisfying (113), (84), and (85), respectively,
and sr satisfying sr > s0 +

βs20
6α Ĥu, the closed-loop system is

exponentially stable in the sense of the norm (87).

The proof of Corollary 2 and Corollary 3 can be established
by following the methodology presented in Section V-B and
Section VI, respectively.

VIII. ROBIN BOUNDARY ACTUATION

Instead of a Neumann or Dirichlet boundary actuation,
some physical models require a Robin boundary actuation. For
instance, in metal additive manufacturing processes known as
Selective Laser Melting [8], the convective heat transfer yields
the following energy balance

−kTx(0, t) = −γ (T (0, t)− Ta) + Ic(t), (132)

at the boundary where a laser beam is applied. Here, γ is a heat
transfer coefficient, Ta is an ambient temperature, and Ic(t) is
an energy flux induced by the controlled laser beam intensity.
For a Robin boundary actuation, the following lemma is stated.

Lemma 7. If there is a unique classical solution to
(102),(132),(104),(105), then for any Ic(t) > γ (T (0, t)− Ta)
on the finite time interval (0, t̄), the condition (8) holds.

Hence, the following condition is required to hold

Ic(t) > γ (T (0, t)− Ta) , ∀t > 0. (133)

We present the following theorem.

Theorem 7. Consider a closed-loop system of the plant
(102),(132),(104),(105) and the control law

Ic(t) =− c

(
k

α

∫ s(t)

0

(T (x, t)− Tm) dx

+
k

β
(s(t)− sr)

)
+ γ (T (0, t)− Ta) , (134)

where c > 0 is the controller gain, under Assumption 1.
Then, for any reference setpoint sr satisfying sr > s0 +
β
α

∫ s0
0

(T0(x)−Tm)dx, the closed-loop system is exponentially
stable in the sense of the norm (19).

The proof of Theorem 7 is straightforwardly derived fol-
lowing the methodology employed in Section IV.

IX. NUMERICAL SIMULATION

For the Stefan problem subject to the Neumann boundary
actuation (see Part I), simulation results are performed con-
sidering a strip of zinc as in [26]. The physical properties
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TABLE I: Physical properties of zinc

Description Symbol Value
Density ρ 6570 kg ·m−3

Latent heat of fusion ∆H∗ 111,961J · kg−1

Heat Capacity Cp 389.5687 J · kg−1 ·K−1

Thermal conductivity k 116 w ·m−1

of the material are given in Table 1. Consistent simulations
to illustrate the feasibility of the backstepping controller with
Dirichlet or Robin boundary actuation are easily achievable but
due to space limitation, these are not provided. Here, we use
the well-known boundary immobilization method combined
with finite difference semi-discretization [23]. The initial val-
ues are set to s0 = 0.01 m, and T0(x) − Tm = T̄ (1 − x/s0)
with T̄ = 100 K, and the setpoint is chosen as sr = 0.35 m
which satisfies the setpoint restriction (15).

A. State feedback control and its robustness

1) Comparison of the pulse input and the backstepping
control law: Fig. 4 shows the responses of the plant (45)–
(48) with the open-loop pulse input (17) (dashed line) and the
backstepping control law (18) (solid line). The time window
of the open-loop pulse input is set to 50 min. The gain
of the backstepping control law is chosen sufficiently small,
c=0.001, to avoid numerical instabilities. Fig. 4 (a) shows
the response of s(t) without the parameters perturbations, i.e.
(ε1, ε2) = (0, 0) and clearly demonstrates that s(t) converges
to sr applying both rectangular pulse input and backstepping
control law. However, the convergence speed is faster with the
backstepping control. Moreover, from the dynamics of s(t)
under parameters’ perturbations (ε1, ε2) = (0.3,−0.2) shown
in Fig. 4 (b), it can be seen that the convergence of s(t) to sr
is only achieved with the backstepping control law. On both
Fig. 4 (a) and Fig. 4 (b), the responses with the backstepping
control law show that the interface position converges faster
without the overshoot beyond the setpoint, i.e., ṡ(t) > 0 and
s0 < s(t) < sr, ∀t > 0.

2) Closed-loop system’s validity with respect to the physical
constraints: The dynamics of the controller qc(t) and the tem-
perature at the initial interface T (s0, t) with the backstepping
control law (18) are described in Fig. 5 (a) and Fig. 5 (b),
respectively, for the system without parameter’s uncertainties,
i.e., (ε1, ε2) = (0, 0) (red) and the system with parameters’
mismatch (ε1, ε2) = (0.3,−0.2) (blue). As presented in Fig.
5 (a), the boundary heat controller qc(t) remains positive, i.e.
qc(t) > 0 in both cases. Moreover, Fig. 5 (b) shows that
T (s0, t) converges to Tm with T (s0, t) > Tm for the system
with accurate parameters and the system with uncertainties
on the parameters. Physically, Fig. 5 (b) means that the
temperature at the initial interface’s location increases away
above the melting temperature Tm, which enables the melting
of the solid-phase to the setpoint sr. After this significant
transient dynamics, T (s0, t) settles back to Tm. An identical
behavior is observed when the system is subject to parameters’
uncertainty. Therefore, the numerical results are consistent
with our theoretical result.

B. Observer design and output feedback control

The initial estimation of the temperature profile is set to
T̂0(x) − Tm =

¯̂
T (1 − x/s0) with ¯̂

T = 10 K while the initial
temperature is set to T̄ = 1 K, and the observer gain is
chosen as λ = 0.001. Then, the restriction on T̂0(x), λ, and
sr described in (84)–(86) are satisfied.

The dynamics of the moving interface s(t), the output
feedback controller qc(t), and the temperature at the initial
interface T (s0, t) are depicted in Fig. 6 (a)–Fig. 6 (c), re-
spectively. Fig. 6 (a) shows that the interface s(t) converges
to the setpoint sr without overshoot which is guaranteed in
Proposition 2. Fig. 6 (b) shows that the output feedback
controller remains positive, which is a physical constraint for
the model to be valid as stated in Lemma 1 and ensured
in Proposition 2. The model validity can be seen in Fig.
6 (c) which illustrates T (s0, t) increases from the melting
temperature Tm to enable melting of material and settles
back to its equilibrium. The positivity of the backstepping
controller shown in Fig. 6 (b), results from the negativity of
the estimation error of the distributed temperature, T̃ (x, t),
as shown in Lemma 4 and Proposition 2. Fig. 6 (d) shows
the dynamics of estimation errors of temperature profile at
x = 0 (red), x = s(t)/4 (blue), and x = s(t)/2 (green),
respectively. It is remarkable that the estimation errors at each
point converge to zero and remains negative, which confirms
the theoretical results stated in Lemma 4 and Proposition 2.

X. CONCLUSION

This paper presented a control and estimation design for
the one-phase Stefan problem via backstepping method. The
system is described by a diffusion PDE defined on a time-
varying spatial domain governed by an ODE.

The novelties of this paper are summarized below.

1) A new approach to globally stabilizing a class of non-
linear parabolic PDEs with moving boundary via a
nonlinear backstepping transformation is proposed.

2) The closed-loop responses satisfy the physical con-
straints needed for the validity of the model.

3) A novel formulation of the Lyapunov function for mov-
ing boundary PDEs was applied and it showed the
exponential stability of the closed loop system.

Even though our state feedback controller for the Neumann
boundary actuation is same as the one proposed in [32], we
ensure the exponential stability of the interface and temper-
ature in H1 norm, which is stronger than the asymptotical
stability presented in [32]. The extension of the robustness
analysis to the observer-based output feedback is our future
work. Note that this hasn’t been proved even for coupled
diffusion PDE-ODE systems defined on a fixed domain [18].
The application of extremum seeking control with static maps
to the Stefan problem following the recent results of [28] could
be an interesting design that can be applied to the optimization
of phase-change phenomena in building use [24].
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Fig. 4: The moving interface responses of the plant (45)–(48) with the open-loop pulse input (17) (dashed line) and the
backstepping control law (18) (solid line).
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APPENDIX A
THE WELL-POSEDNESS OF THE CLASSICAL SOLUTION OF

THE STEFAN PROBLEM

In this section, we define the classical solution of the Stefan
problem and state the well-posedness referring to [12].

Definition 1. Under Assumption 1, a pair (T (x, t), s(t)) is
the classical solution of the one-phase Stefan problem (3)–(7)
with qc(t) ≥ 0 and for all t < σ, where 0 < σ ≤ ∞ if
(i) Txx and Tt are continuous for 0 < x < s(t), 0 < t < σ;
(ii) T and Tx are continuous for 0 ≤ x ≤ s(t), 0 < t < σ;
(iii) T is also continuous for t = 0, 0 < x ≤ s0 and 0 ≤
lim inf T (x, t) ≤ lim supT (x, t) <∞ as t→ 0, x→ 0;
(iv) s(t) is continuously differentiable for 0 ≤ t < σ;
(v) the equations (3)–(7) are satisfied.

Lemma 8. Assume that qc(t) and T0(x) are continuously
differentiable functions for ∀t > 0 and ∀x ∈ [0, s0]. Then
there exists a unique classical solution (T (x, t), s(t)) of the
system (3)–(7) with qc(t) ≥ 0 and Assumption 1 for all t > 0.

Definition 1 and Lemma 8 hold for a Dirichlet boundary
actuation if (106) holds, and for Robin boundary actuation if
(133) holds, respectively. Furthermore, both Definition 1 and
Lemma 8 can be extended to the generalized parabolic PDE

Tt = α(x, t)Txx + b(x, t)Tx + h(x, t)T, (135)

provided that h(x, t) ≤ 0 and the functions αx, αxx, αt, b,
bx, and h are Hölder continuous for 0 ≤ x <∞, t ≥ 0.

APPENDIX B
BACKSTEPPING TRANSFORMATION FOR MOVING

BOUNDARY

1) Direct transformation: Define the general backstepping
transformation

w(x, t) =u(x, t)−
∫ s(t)

x

k(x− y)u(y, t)dy

− ϕ(x− s(t))X(t), (136)

which transforms the reference error system (21)–(24) into the
following target system

wt(x, t) =αwxx(x, t) + ṡ(t)ϕ′(x− s(t))X(t), (137)
wx(0, t) =0, (138)
w(s(t), t) =0, (139)

Ẋ(t) =− cX(t)− βwx(s(t), t). (140)

The stability of the target system (137)–(140) is guaranteed if
ṡ(t) > 0, s0 < s(t) < sr as shown in Appendix C-1. Then,
taking first and second spatial derivatives of (136) and the first
time derivative of (136), we obtain the following relation

wt(x, t)−αwxx(x, t)− ṡ(t)ϕ′(x− s(t))X(t)

=− (αk(x− s(t))− βϕ(x− s(t)))ux(s(t), t)

+ αϕ′′(x− s(t))X(t). (141)

Evaluating (136) and its spatial derivative at x = s(t), we have

w(s(t), t) =− ϕ(0)X(t), (142)

wx(s(t), t) =ux(s(t), t)− ϕ′(0)X(t). (143)

In order to map (21)–(24) into (137)–(140) for any continuous
functions (u(x, t), X(t)) through the transformation (141)–
(143), the kernel functions k(x− y) and ϕ(x) must satisfy

ϕ′′(x− s(t)) =0, ϕ(0) = 0, ϕ′(0) =
c

β
, (144)

k(x− y) =
β

α
ϕ(x− y). (145)

From (144), the solution to the gain kernel is given by (26).
2) Inverse transformation: Suppose that the inverse trans-

formation that maps (137)–(140) into (21)–(24) writes

u(x, t) =w(x, t) +

∫ s(t)

x

l(x− y)w(y, t)dy

+ ψ(x− s(t))X(t), (146)

where l(x− y), ψ(x− s(t)) are the kernel functions. Taking
derivative of (146) with respect to t and x, respectively, along
the solution of (27)–(30), the following relations are derived

ut(x, t)− αuxx(x, t)

=

{
c

β

(
1 +

∫ s(t)

x

l(x− y)dy

)
− ψ′(x− s(t))

}
ṡ(t)X(t)

+ (αl(x− s(t))− βψ(x− s(t)))wx(s(t), t)

− (cψ(x− s(t)) + αψ′′(x− s(t)))X(t). (147)

u(s(t), t) =ψ(0)X(t), (148)
ux(s(t), t) =wx(s(t), t) + ψ′(0)X(t). (149)

From (148)–(147), one can deduce that in order to recover
the original system(21)–(24) for any continuous functions
(w(x, t), X(t)), ψ(x) and l(x− y) must satisfy

ψ′′(x) =− c

α
ψ(x), ψ(0) = 0, ψ′(0) =

c

β
, (150)

l(x− s(t)) =
β

α
ψ(x− s(t)), (151)

ψ′(x− s(t)) =
c

β

(
1 +

∫ s(t)

x

l(x− y)dy

)
. (152)

The solution to (150) is given by (32), from which l(x−y) can
be deduced using (151). These solutions satisfy the condition
(152) as well.

APPENDIX C
STABILITY ANALYSIS

In this section, we prove the exponential stability of (w,X)
system defined in (137)–(140) via Lyapunov analysis, which
induces the stability of the original (u,X) system. The fol-
lowing assumptions on the interface dynamics

ṡ(t) > 0, 0 < s0 < s(t) < sr, (153)

which are shown in Section IV-B are stated.
1) Stability of the target system: Firstly, we show the ex-

ponential stability of the target system (137)–(140). Consider



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 2, MARCH 2019 15

the Lyapunov function V such that

V =
1

2
||w||2H1

+
p

2
X(t)2, (154)

with a positive number p > 0 to be chosen later. Then,
noting that the boundary condition (139) yields wt(s(t), t) =
−ṡ(t)wx(s(t), t), by chain rule d

dtw(s(t), t) = wt(s(t), t) +
ṡ(t)wx(s(t), t) = 0, the time derivative of (154) along the
solution of the target system (137)–(140) yields

V̇ =− α||wxx||2L2
− α||wx||2L2

− pcX(t)2 − pβX(t)wx(s(t), t)

+ ṡ(t)

(
−ϕ′(0)X(t)wx(s(t), t)−

1

2
wx(s(t), t)

2

)
+ ṡ(t)X(t) (ϕ′′(s(t))w(0, t)

+

∫ s(t)

0

f(x− s(t))w(x, t)dx

)
, (155)

where f(x) = ϕ′(x) − ϕ′′′(x). Define m =
∫ sr
0
f(−x)2dx.

Using (153), Young’s, Cauchy Schwarz, Poincare’s, Agmon’s
inequality, and choosing p = cα

4β2sr
, we have

V̇ ≤− α

2
||wxx||2L2

− α||wx||2L2

− pc

2
X(t)2 + ṡ(t)

{
1 + ϕ′(0)2

2
X(t)2

+4srϕ
′′(s(t))2||wx||2L2

+m||w||2L2

}
,

≤− α

8s2r
||w||2H1

− pc

2
X(t)2 + ṡ(t)

{
4srϕ′′||wx||2L2

+m||w||2L2
+

1 + ϕ′(0)2

2
X(t)2

}
,

≤− bV + aṡ(t)V, (156)

where a = 2max
{
4srϕ′′,m,

1+ϕ′(0)2

2p

}
, b = min

{
α
4s2r
, c
}

,

and ϕ′′ := sup0≤s(t)≤sr ϕ
′′(s(t))2.

2) Exponential stability for the original (u,X)-system: The
norm equivalence between the target system and original sys-
tem is shown using the direct and the inverse transformation,
(136) and (146), respectively. Taking the square of (146) and
applying Young’s and Cauchy Schwarz inequality, we have

u(x, t)2 ≤ 3ψ(x− s(t))2X(t)2 + 3w(x, t)2

+
3β2

α2

(∫ s(t)

x

ψ(x− y)2dy

)(∫ s(t)

x

w(y, t)2dy

)
.

(157)

Integrating (157) on [0, s(t)] and applying Cauchy
Schwarz inequality with the help of (153), we
have ||u||2L2

≤ 3
(
1 + β2srN1

α2

)
||w||2L2

+ 3N1X(t)2,

where N1 :=
∫ sr
0
ψ(−x)2dx. Similarly, taking the

spatial derivative of (146), we have ||ux||2L2
≤

3||wx||2L2
+ 3β2

α2

(
ψ(0)2 + srN2

)
||w||2L2

+ 3N2X(t)2,
where N2 :=

∫ sr
0
ψ′(−x)2dx. Since ϕ(0) = ψ(0) = 0, the

following estimates hold:

||w||2L2
≤M1||u||2L2

+M2X(t)2, (158)

||wx||2L2
≤ 3||ux||2L2

+M3||u||2L2
+M4X(t)2, (159)

||u||2L2
≤M5||w||2L2

+M6X(t)2, (160)

||ux||2L2
≤ 3||wx||2L2

+M7||w||2L2
+M8X(t)2, (161)

where M1 = 3
(
1 + β2

α2 sr
(∫ sr

0
ϕ(−x)2dx

))
, M2 =

3
(∫ sr

0
ϕ(−x)2dx

)
, M3 = 3β2

α2 sr
(∫ sr

0
ϕ′(−x)2dx

)
, M4 =

3
(∫ sr

0
ϕ′(−x)2dx

)
, M5 = 3

(
1 + β2

α2 srN1

)
, M6 = 3N1,

M7 = 3β2

α2 srN2, M8 = 3N2. Adding (158) to (159) and (160)
to (161), we derive the following inequality

δ
(
||u||2H1

+X(t)2
)
≤ ||w||2H1

+ pX(t)2

≤ δ̄
(
||u||2H1

+X(t)2
)
, (162)

where δ̄ = max{M1 + M3, p + M2 + M4}, δ =
min{1,p}

max{M5+M7,M6+M8+1} . Define a parameter D > 0 as D =
δ̄
δ e

asr . Then, with the help of (162), (43), we deduce that there
exists D > 0 and b > 0 such that

||u||2H1
+X(t)2 ≤ D

(
||u0||2H1

+X(0)2
)
e−bt. (163)
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