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Delay-Adaptive Predictor Feedback Control of
Reaction–Advection–Diffusion PDEs With a Delayed Distributed Input

Shanshan Wang , Mamadou Diagne , Member, IEEE, and Jie Qi , Member, IEEE

Abstract—We consider a system of reaction–advection–
diffusion partial differential equation (PDE) with a distributed input
subject to an unknown and arbitrarily large time delay. Using Lya-
punov technique, we derive a delay-adaptive predictor feedback
controller to ensure the global stability of the closed-loop system
in the L2 sense. More precisely, we express the input delay as a
1-D transport PDE with a spatial argument leading to the trans-
formation of the time delay into a spatially distributed shift. For
the resulting mixed transport and reaction–advection–diffusion
PDE system, we employ a PDE backstepping design and certainty
equivalence principle to derive the suitable adaptive control law
that compensates for the effect of the unknown time delay. Our
controller ensures the global stabilization in the L2 sense. Our
result is the first delay-adaptive predictor feedback controller with
a PDE plant subject to a delayed distributed input. The feasibility
of the proposed approach is illustrated by considering a mobile
robot that spread a neutralizer over a polluted surface to achieve
efficient decontamination with an unknown actuator delay arising
from the noncollocation of the contaminant diffusive process and
the moving neutralizer source. Consistent simulation results are
presented to prove the effectiveness of the proposed approach.

Index Terms—Delay-adaptive control, distributed input delay,
partial differential equation (PDE) backstepping, predictor feed-
back, reaction–advection–diffusion PDE.

I. INTRODUCTION

Interactions of local quantities and local reaction kinetics governed
by physical laws are often described by reaction–advection–diffusion
equations. The occurrence of diffusive phenomena in diverse physical
processes involving chemical reactions [1], thermal fluids [2], biolog-
ical pattern formation [3], etc., gives rise to various challenges. Over
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the past few decades, these challenges motivated the development of
many control design approaches to enable stabilization among other
objectives.

Relevant advances have been achieved toward the controlling of
diffusion-driven distributed parameter systems with boundary actua-
tion. Early controllers are constructed upon reduced-order models that
approximate the infinite-dimensional systems by finite-dimensional
ones. However, the stability and performance of such design should
be validated for the original partial differential equation (PDE), or at
least a high-order approximation of it to avoid instability [4]. As more
recent results, various infinite-dimensional control design techniques
that are based on PDE dynamics have emerged, among which, the
popular backstepping design allows exponential stabilization of plants
with unstable reaction terms [5], [6]. As well, robust regulation for
systems subject to unmeasurable in-domain and boundary disturbances,
which are described by a finite-dimensional signal model, has been
achieved via backstepping design [7]. Later on, backstepping has been
exploited for the control of coupled reaction–diffusion systems with
constant and spatially varying coefficients [8]–[10]. The key idea of
the backstepping design relies on the choice of an invertible Volterra
transformation, which maps an unstable plant into a target system whose
stability can be derived from a Lyapunov argument.

On the other hand, the study of dynamical systems governed by
reaction–diffusion PDEs subject to actuators delays that are deleterious
to stability has become an active research topic since the pioneering con-
tribution [11], which develops a PDE backstepping boundary controller
to compensate the delay effect. The aforementioned method has been
extended to a 3-D formation control problem to compensate for the
effect of potential input delays [12]. Alternatively, a series expansion
approach and a Lyapunov-based point control approach design have
been proposed in [13] and [14], respectively. In the context of a
networked architecture that can remotely actuate a reaction–diffusion
process with sampled point measurements and a delayed point actua-
tion, the works in [14]–[16] developed efficient control algorithms using
Lyapunov–Krasovskii functionals to derive LMI-based stability condi-
tions (see also Karafyllis and Krstic [17], which deal with sampled-data
control of PDEs). For a relatively small unknown input delay, Katz and
Fridman [18] develop a finite-dimensional observer-based controller for
a reaction–diffusion PDE by using a modal decomposition approach
whose stability is analyzed by Lyapunov functionals combined with
Halanay’s inequality.

In this article, we design a delay-adaptive controller for a one-
dimensional reaction–advection–diffusion PDE with arbitrarily large
unknown delayed distributed input. The key point of our approach lies
in the conversion of the input delay into a transport PDE containing a
spatial argument. Here, the spatial argument transforms the time-delay
into an in-domain spatially distributed shift [19], [20] resulting in a
mixed system different from the PDE–PDE cascade system introduced
in [11]. We employ the PDE backstepping method and the choice of
the unknown delay parameter’s update law leads to a target system
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structured as an “in-domain cascade system” whose L2 global stabil-
ity is established using suitable Lyapunov functionals. The invertible
Volterra/backstepping transformation enables to establish the norm
equivalence between the target system and the plant resulting in the L2

global stability of the PDE plant subject to the designed delay-adaptive
compensated controller. It is worth to mention that for delay distributed
systems, controllers to compensate input delays based on predictor
feedback approach and backstepping method can be found in [11] and
[21]–[28]. This is possibly the first time a delay-adaptive control method
has been applied to a PDE plant with a distributed input.

Following the works in [29]–[32], our control design is applied to a
simplified model of surface decontamination process involving a remote
moving source that sprays a decontaminant or neutralizer on a surface
charged with diffusive toxic particles. We account for an unknown input
delay induced by the transport of the neutralizer from the noncollocated
source to the contaminated surface governed by a reaction–diffusion
PDE.

This article is organized as follows. Section II briefly describes
the design of a nonadaptive controller for the considered reaction–
advection–diffusion PDE system. In Section III, the design of the
delay-adaptive control law is discussed. Section IV is dedicated to
the stability analysis of the resulting adaptive closed-loop system, and
the decontamination process is described in Section V with consistent
simulation results proving the feasibility of our approach.

Notation: Throughout this article, we adopt the following notation
to define the L2-norm for χ(·) ∈ L2[−�, �] and φ(·, ·) ∈ L2([−�, �]×
[0, 1]):

‖χ‖2L2 =

∫ �

−�

|χ(x)|2dx, ‖φ‖2L2 =

∫ �

−�

∫ 1

0

|φ(x, s)|2dsdx (1)

and set ‖χ‖2 = ‖χ‖2
L2 and ‖φ‖2 = ‖φ‖2

L2 . Also define

H1
E [−�, �] = {χ(·) ∈ H1(−�, �), χ(−�) = χ(�) = 0} (2)

L2
E([−�, �]× [0, 1]) = {φ(·, ·) ∈ L2([−�, �]× [0, 1))

φ(·, 1) = 0}. (3)

For any given function ψ(·, D̂(t))

∂ψ(·, D̂(t))

∂t
=

˙̂
D(t)

∂ψ(·, D̂(t))

∂D̂(t)
. (4)

II. PROBLEM STATEMENT AND NONADAPTIVE CONTROLLER

Consider the reaction–advection–diffusion PDE with a known dis-
tributed actuator delay D defined as follows:

ut(x, t) = εuxx(x, t) + βux(x, t) + λ(x)u(x, t)

+ g(x)U(x, t−D) (5)

u(−�, t) = u(�, t) = 0 (6)

u(x, 0) = u0(x) (7)

where the state is defined in (x, t) ∈ (−�, �)× R+, λ(·) ∈ C[−�, �], β,
ε > 0 are known constants. Here, we assume that g(·) ∈ L2([−�, �] :
R+). With the change of variables ǔ(x) = e

β
2εxu(x), the system (5)–

(7) is rewritten as

ǔt(x, t) = εǔxx(x, t) + λ1(x)ǔ(x, t) + f(x)U(x, t−D) (8)

ǔ(−�, t) = ǔ(�, t) = 0 (9)

ǔ(x, 0) = ǔ0(t) (10)

where λ1(x) = λ(x)− β2

4ε
and f(x) = e

β
2εxg(x). Following Krstic

and Bresch-Pietri [33], the delayed input U(x, t−D) can be written
as a transport equation coupled with (8)–(10), considering the following
infinite-dimensional actuator state:

v(x, s, t) = U(x, t+Ds−D). (11)

Hence, system (8)–(10) is equivalent to

ǔt(x, t) = εǔxx(x, t) + λ1(x)ǔ(x, t) + f(x)v(x, 0, t) (12)

ǔ(−�, t) = ǔ(�, t) = 0 (13)

ǔ(x, 0) = ǔ0(t) (14)

Dvt(x, s, t) = vs(x, s, t), s ∈ [0, 1] (15)

v(x, 1, t) = U(x, t) (16)

v(x, s, 0) = v0(x, s) (17)

where v(x, s, t) is the state of the actuator and the known propagation
speed is given by 1/D. To design the delay-compensated controller
U(x, t), a backstepping approach can be employed [11], [12], [19],
[27] by introducing the following integral transform:

z(x, s, t) = v(x, s, t)−
∫ �

−�

γ(x, s, y)ǔ(y, t)dy

−D

∫ �

−�

∫ s

0

q(x, s, y, r)v(y, r, t)drdy (18)

where kernel function γ(x, s, y) is defined on [−�, �]× [0, 1]× [−�, �]
and q(x, s, y, r) on [−�, �]× [0, 1]× [−�, �]× [0, 1]. Using (18), the
plant (12)–(17) is transformed into the following stable target system:

ǔt(x, t) = εǔxx(x, t)− cǔ(x, t) + f(x)z(x, 0, t) (19)

ǔ(−�, t) = ǔ(�, t) = 0 (20)

ǔ(x, 0) = ǔ0(x) (21)

Dzt(x, s, t) = zs(x, s, t) (22)

z(x, 1, t) = 0 (23)

z(x, s, 0) = z0(x, s) (24)

where c > 0 is the controller gain, which potentially determines the
convergence rate. The transport system in z has a mild solution

z(x, s, t) =

{
z0(x, s+

t
D
), 0 ≤ s+ t

D
≤ 1

0, s+ t
D
> 1

. (25)

The gain kernels in (18) satisfy

γs(x, s, y) = Dεγyy(x, s, y) +Dλ1(y)γ(x, s, y) (26)

γ(x, s, �) = γ(x, s,−�) = 0 (27)

γ(x, 0, y) = − λ1(y) + c

f(y)
δ(x− y) (28)

qr(x, s, y, r) + qs(x, s, y, r) = 0 (29)

q(x, s, y, 0) = f(y)γ(x, s, y) (30)

where δ(·) is Dirac delta function. From [34, Corollary 7.2.8], one know
that (26)–(28) are well-posed and q(x, s, y, r) = f(y)γ(x, s− r, y).
From the boundary conditions (16) and (23), the associated control law
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is straightforwardly derived as

U(x, t) =

∫ �

−�

γ(x, 1, y)ǔ(y, t)dy

+

∫ �

−�

∫ t

t−D

q

(
x, 1, y,

κ− t

D
+ 1

)
U(y, κ)dκdy. (31)

Here, the stability of the target system (19)–(24) implies that of the
original system (12)–(17), knowing that the transformation (18) is
invertible with an inverse transform defined as

v(x, s, t) = z(x, s, t) +

∫ �

−�

η(x, s, y)ǔ(y, t)dy

+D

∫ �

−�

∫ s

0

p(x, s, y, r)z(y, r, t)drdy. (32)

The kernels function η(x, s, y) and p(x, s, y, r) are explicitly given as

η(x, s, y) = − λ1(x) + c

�f(x)

∞∑
n=1

e
−D(c+n2π2ε

�2
)s

· sin
(nπ
�
y
)
sin

(nπ
�
x
)
, s ∈ (0, 1] (33)

η(x, 0, y) = − λ1(y) + c

f(y)
δ(x− y) (34)

p(x, s, y, r) = f(y)η(x, s− r, y). (35)

We refer the reader to the work in [12] and [19], where the proof of
global stabilization of systems similar to (12)–(17) under the control
law (31) is discussed. Next, we will derive an adaptive control law that
globally stabilizes (12)–(17) when the input delay D is unknown.

III. DESIGN OF A DELAY-ADAPTIVE FEEDBACK CONTROL

A. Adaptive Controller Design

Considering the plant (8)–(10) with an unknown arbitrarily large
delayD or equivalently the cascade system (12)–(17) with an unknown
propagation speed 1/D, our goal is to design an adaptive boundary
controller that ensures a global stability result.

Assumption 1: The upper and lower bounds of the unknownD > 0
denoted by D̄ and D, respectively, are known.

Based on the certainty equivalence principle, we define the following
delay-adaptive distributed predictor feedback controller:

U(x, t) =

∫ �

−�

γ(x, 1, y, D̂(t))ǔ(y, t)dy

+

∫ �

−�

∫ t

t−D̂(t)

q(x, 1, y,
κ− t

D̂(t)
+ 1, D̂(t))U(y, κ)dκdy

(36)

which is similar to (31), but account for the estimate of D, denoted
D̂(t). The estimate D̂(t) is governed by an update law arising from the

adaptive controller design, namely, ˙̂
D(t).

B. Target System for the Plant With Unknown Input Delay

To prove the stability of the plant (8)–(10), equivalently, the system
(12)–(17) under the control law (36), we introduce the backstepping
transformation (ǔ , v) �→ (ǔ , z) as

z(x, s, t) = v(x, s, t)−
∫ �

−�

γ(x, s, y, D̂(t))ǔ(y, t)dy

− D̂(t)

∫ �

−�

∫ s

0

q(x, s, y, r, D̂(t))v(y, r, t)drdy (37)

and its inverse

v(x, s, t) = z(x, s, t) +

∫ �

−�

η(x, s, y, D̂(t))ǔ(y, t)dy

+ D̂(t)

∫ �

−�

∫ s

0

p(x, s, y, r, D̂(t))z(y, r, t)drdy (38)

where the kernelsγ(x, s, y, D̂(t)), q(x, s, y, r, D̂(t)), η(x, s, y, D̂(t)),
and p(x, s, y, r, D̂(t)) have the structure of γ(x, s, y), q(x, s, y, r),
η(x, s, y), and p(x, s, y, r) defined in (26)–(30) and (33)–(35), respec-
tively, but with D replaced by the estimate D̂(t). By using of (37), the
system (12)–(17) is mapped into the following target system:

ǔt(x, t) = εǔxx(x, t)− cǔ(x, t) + f(x)z(x, 0, t) (39)

ǔ(−�, t) = ǔ(�, t) = 0 (40)

ǔ(x, 0) = ǔ0(x) (41)

Dzt(x, s, t) = zs(x, s, t)− D̃(t)P1(x, s, t)

−D
˙̂
D(t)P2(x, s, t) (42)

z(x, 1, t) = 0 (43)

z(x, s, t) = z0(x, s) (44)

where D̃(t) = D − D̂(t) is the estimation error, the functions
Pi(x, s, t), i = 1, 2 are given as follows:

P1(x, s, t) =

∫ �

−�

z(y, 0, t)M1(x, s, y, t)dy

+

∫ �

−�

ǔ(y, t)M2(x, s, y, t)dy (45)

P2(x, s, t) =

∫ �

−�

ǔ(y, t)M3(x, s, y, t)dy

+

∫ �

−�

∫ s

0

z(y, r, t)M4(x, s, y, r, t)drdy (46)

and Mi, i = 1, 2, 3, 4 are defined as

M1(x, s, y, t) = f(y)γ(x, s, y, D̂(t)) (47)

M2(x, s, y, t) = εγyy(x, s, y, D̂(t))− cγ(x, s, y, D̂(t)) (48)

M3(x, s, y, t) = γD̂(t)(x, s, y, D̂(t))

+ D̂(t)

∫ �

−�

∫ s

0

qD̂(t)(x, s, ξ, r, D̂(t))η(ξ, r, y, D̂(t))drdξ

+

∫ �

−�

∫ s

0

q(x, s, ξ, r, D̂(t))η(ξ, r, y, D̂(t))drdξ (49)

M4(x, s, y, r, t) = q(x, s, y, r, D̂(t)) + D̂qD̂(t)(x, s, y, r, D̂(t))

+ D̂(t)

∫ �

−�

∫ s

r

q(x, s, ξ, δ, D̂(t))p(ξ, δ, y, r, D̂(t))dδdξ

+ D̂(t)2
∫ �

−�

∫ s

r

qD̂(t)(x, s, ξ, δ, D̂(t))

· p(ξ, δ, y, r, D̂(t))dδdξ. (50)
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Here, M̄i = max−�≤x≤y≤�, 0≤s≤1, t≥0{|Mi(x, s, y, t)|}, i = 1, 2,3,
M̄4 = max−�≤x≤y≤�, 0≤r≤s≤1, t≥0{|M4(x, s, y, r, t)|}, and the time-
dependence is induced by the estimate of the delay D̂(t).

C. Parameter’s Update Law

To estimate the unknown parameter D, we choose the following
update law:

˙̂
D(t) = 2θb1Proj[D,D̄]{τ(t)} (51)

where θ ∈ (0, θ�) and

θ� =
min{D(c− 2

ι1
), α,D(ε+ c)} ·min{ 1

2
, b1}

4b21D̄L
2

(52)

τ(t) = −
∫ �

−�

∫ 1

0
(1 + x)z(x, s, t)P1(x, s, t)dsdx

N(t)
(53)

with

α = b1 − D̄f̄2

2
(ι1 + ι2) (54)

L = max{2�M̄1, 2�M̄2, M̄1 + M̄2, 1, 2�M̄3

M̄3 + M̄4 + 2�M̄4} (55)

N(t) = 1 +
1

2
‖ǔ‖2 + 1

2
‖ǔx‖2

+ b1

∫ �

−�

∫ 1

0

(1 + s)z(x, s, t)2dsdx (56)

f̄ = max−�≤x≤�{|f(x)|}, and b1, ι1, and ι2 are positive constants,
which will be discussed in Section IV. The standard projection operator
introduced in (51) is given by

Proj[D,D̄]{τ(t)} =

⎧⎨
⎩

0 D̂(t) = D & τ(t) < 0

0 D̂(t) = D̄ & τ(t) > 0
τ(t) otherwise

. (57)

The convergence of the closed-loop system consisting of (12)–(17),
with update law (51) and the adaptive controller (36), is stated in the
following theorem.

Theorem 1: Consider the closed-loop system (12)–(17), the control
law (36), and the update law defined through (51)–(57). The solution of
the system (ǔ, v,D − D̂(t)) is stable and there exist positive constants
R and � (independent of the initial conditions) such that for all ini-
tial conditions satisfying (u0, v0, D̃(0)) ∈ L2(−�, �)× L2([−�, �]×
[0, 1))× [D, D̄] and the compatibility conditions at the boundary,
u0(−�) = u0(�) = 0 and v(x, 1, 0) = U(x, 0), the following holds:

Ψ(t) ≤ R(e
�
D

Ψ(0) − 1)∀t ≥ 0 (58)

where Ψ(t) = ‖ǔ‖2 + ‖ǔx‖2 + ‖v‖2 + D̃(t)2, furthermore

lim
t→∞

ǔ(x, t) = 0. (59)

Remark 1: As stated in [33], the update law cannot guarantee the
convergence of the estimated parameter to the real value, e.g., D, but
one can obtain a perfect convergence when θ and b1 are finely tuned.
Nevertheless, the proposed adaptive control law guarantees that the
closed-loop system is globally stable and the states converge to the
desired set points, even if D̂(t) does not converge to D.

IV. STABILITY OF THE CLOSED-LOOP SYSTEM UNDER

DELAY-ADAPTIVE PREDICTOR FEEDBACK CONTROL

The proof of Theorem 1 is established by ensuring the pointwise
boundedness and regulation of ǔ(x, t). As a first step, we state the L2

boundedness of ǔ(x, t).

A. L2 Boundedness of the Distributed State

We consider the Lyapunov–Krasovskii functional

V1 = Dlog

(
1 +

1

2
‖ǔ‖2 + 1

2
‖ǔx‖2

+b1

∫ �

−�

∫ 1

0

(1 + s)z(x, s, t)2dsdx

)
+
D̃(t)2

2θ
. (60)

Taking the time derivative of (60) along (39)–(44), we get

V̇1 =
1

N(t)

(
εD

∫ �

−�

ǔ(x, t)ǔxx(x, t)dx− cD

∫ �

−�

ǔ(x, t)2dx

+D

∫ �

−�

ǔ(x, t)f(x)z(x, 0, t)dx− εD

∫ �

−�

ǔxx(x, t)
2dx

+D

∫ �

−�

ǔxx(x, t)(cǔ(x, t)− f(x)z(x, 0, t))dx

+ 2b1

∫ �

−�

∫ 1

0

(1 + s)z(x, s, t)zs(x, s, t)dsdx

−2b1D̃(t)

∫ �

−�

∫ 1

0

(1 + s)z(x, s, t)P1(x, s, t)dsdx

−2b1D
˙̂
D(t)

∫ �

−�

∫ 1

0

(1 + s)z(x, s, t)P2(x, s, t)dsdx

)

− ˙̂
D(t)

D̃(t)

θ
(61)

where N(t) is defined in (56). Then, by using integrations by part,
Young’s inequality, Poincaré inequality, and the update law (51), the
following holds:

V̇1 ≤ 1

N(t)

(
−D

(
c− 2

ι1

)
‖ǔ‖2 −D(ε+ c)‖ǔx‖2 − b1‖z‖2

−
(
ε− 1

2ι2

)
‖ǔxx‖2 −

(
b1 − D̄

(
ι1f̄

2

2
+
ι2f̄

2

2

))
‖z(x, 0, t)‖2

−2b1D
˙̂
D(t)

∫ �

−�

∫ 1

0

(1 + s)z(x, s, t)P2(x, s, t)dsdx

)
. (62)

Then, selecting ι1 > 2
c

, ι2 ≥ 1
2ε

, and b1 >
D̄f̄2

2
(ι1 + ι2), we derive

the following estimate:

V̇1 ≤ 1

N(t)

(
−D

(
c− 2

ι1

)
‖ǔ‖2 −D(ε+ c)‖ǔx‖2 − b1‖z‖2

− 2b1D
˙̂
D(t)

∫ �

−�

∫ 1

0

(1 + s)z(x, s, t)P2(x, s, t)dsdx

−
(
b1 − D̄f̄2

2
(ι1 + ι2)

)
‖z(x, 0, t)‖2

)
. (63)

After a lengthy but simple calculation, using the Cauchy–Schwarz
and Young’s equalities, and combining (45) and (46), one can get the
following estimates:
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∫ �

−�

∫ 1

0

(1 + s)z(x, s, t)P1(x, s, t)dsdx

≤ L(‖ǔ‖2 + ‖ǔx‖2 + ‖z‖2 + ‖z(x, 0, t)‖2) (64)∫ �

−�

∫ 1

0

(1 + s)z(x, s, t)P2(x, s, t)dsdx

≤ L
(‖ǔ‖2 + ‖ǔx‖2 + ‖z‖2) (65)

where L is given by (55).
Thus, combining (63), (64), and (65), we have

V̇1 ≤ −
(
min{D(c− 2

ι1
), α,D(ε+ c)} − θ

4b21D̄L
2

min{ 1
2
, b1}

)

· ‖ǔ‖
2 + ‖ǔx‖2 + ‖z‖2 + ‖z(x, 0, t)‖2

N(t)
(66)

whereα is defined in (54). By choosing θ ∈ (0, θ�), where θ� is defined
in (52), we have V̇1 ≤ 0, and hence

V1(t) ≤ V1(0) (67)

for all t ≥ 0. From this result, we now derive a stability estimate. The
following inequalities readily follow from (60)–(67):

‖ǔ(t)‖2 ≤ 2(e
V1
D − 1), ‖ǔx(t)‖2 ≤ 2(e

V1
D − 1) (68)

‖z(t)‖2 ≤ 1

b1
(e

V1
D − 1), D̃(t)2 ≤ 2θV1. (69)

The relationship between (ǔ, v) and (ǔ, z) is given in the following
proposition.

Proposition 1: From (37) and (38), we get the following relationship
between the original and the target system:

‖ǔ(t)‖2 + ‖ǔx(t)‖2 + ‖v(t)‖2

≤ s1‖ǔ(t)‖2 + s2‖ǔx(t)‖2 + s3‖z(t)‖2 (70)

‖ǔ(t)‖2 + ‖ǔx(t)‖2 + ‖z(t)‖2

≤ r1‖ǔ(t)‖2 + r2‖ǔx(t)‖2 + r3‖v(t)‖2 (71)

where ri and si, i = 1, 2, 3 are sufficiently large positive constants
given by

s1 = 1 + C1, s2 = 1, s3 = 3 + 3D̄2C2 (72)

r1 = 1 + C3, r2 = 1, r3 = 3 + 3D̄2C4 (73)

Ci > 0, for i = 1, 2, 3, 4 are constants.
The proof of Proposition 1 is stated in the Appendix. Furthermore,

from (60), (68), (69), and (70), it follows that

‖ǔ(t)‖2 + ‖ǔx(t)‖2 + ‖v(t)‖2 ≤
(
2s1 + 2s2 +

s3
b1

)
(e

V1
D − 1)

(74)

and combining D̃(t)2 ≤ 2θV1 and (74), we get

Ψ(t) ≤
(
2s1 + 2s2 +

s3
b1

+ 2Dθ

)
(e

V1
D − 1). (75)

So, we have bounded Ψ(t) in terms of V1(t) and, thus, using (67), in
terms of V1(0). Now, we have to bound V1(0) in terms of Ψ(0). First,
from (60), it follows that

V1 ≤ D̄

2
‖ǔ(t)‖2 + D̄

2
‖ǔx(t)‖2 + 2b1‖z(t)‖2 + D̃(t)2

2θ

≤ �Ψ(t) (76)

where � = (D̄ + 2b1)(r1 + r2 + r3) +
1
2θ

, and hence to V1(0) ≤
�Ψ(0). Then, combining (67) and (75), we have completed the proof
of the stability estimate (58) with R = 2s1 + 2s2 +

s3
b1

+ 2Dθ.

B. Pointwise Boundedness and Regulation of the Distributed
State

Now, we ensure the regulation of the distributed state. From (60),
(66), and (67), we get‖ǔ‖, ‖ǔx‖, ‖z‖, and D̂(t) are bounded. The
following estimate is established:∫ t

0

‖ǔ(τ)‖2dτ ≤ sup
0≤τ≤t

N(τ)

∫ t

0

‖ǔ(τ)‖2
N(τ)

dτ

≤ N(0)e
D̃(0)2

2θ (logN(0) + D̃(0)2

2θ
)

min{D(c− 2
ι1
), α,D(ε+ c)} − θ

4b2
1
D̄L2

min{ 1
2 ,b1}

(77)

by using (67) and integrating (66) over [0, t]. Thus, we get ‖ǔ‖ is
square integrable in time [35]. One can establish that ‖ǔx‖, ‖z‖, and
‖z(x, 0, t)‖ are square integrable in time similarly. Since ‖ǔx‖ is
bounded, using Agmon’s inequality, the boundedness of ǔ(x, t) for
all x ∈ [−�, �] is ensured. By using (70), we have ‖v‖ is bounded
and square integrable in time. From (31), we get ‖U‖ is bounded and
integrable by using the Cauchy–Schwart inequality. Then, by using
(11), we get the boundedness of ‖v(x, 0, t)‖ for t ≥ D.

Next, we prove that d
dt
(‖ǔ‖2) is bounded by defining the following

Lyapunov function:

V2 =
1

2

∫ �

−�

ǔ(x, t)2dx. (78)

It can be easily established that the time derivative of (78) satisfies the
following estimate:

V̇2 =

∫ �

−�

ǔ(x, t)ut(x, t)dx+

∫ �

−�

f(x)ǔ(x, t)v(x, 0, t)dx

≤ −ε‖ǔx‖2 +
(

λ̄1 +
1

2ι3

)
‖ǔ‖2 + f̄2ι3

2
‖v(x, 0, t)‖2 (79)

where ι3 > 0. Knowing that ‖ǔx‖, ‖ǔ‖, and ‖v(x, 0, t)‖ are bounded
and square integrable in time, so we have V̇2 ≤ −2εV2 + f2(t) <

∞ with f2(t) = (λ̄1 +
1

2ι3
)‖ǔ‖2 + f̄2ι3

2
‖v(x, 0, t)‖2, that means,

d
dt
(‖ǔ‖2) is bounded for t ≥ D. Since ‖ǔ‖2 is bounded and integrable,

by Barbalat’s lemma (see [36, Lemma D.1]), we get ‖ǔ‖ → 0 as
t→ ∞. By Agmon’s inequality ǔ(x, t)2 ≤ 2‖ǔ‖‖ǔx‖, which also
leads to the regulation of ǔ(x, t) to zero uniformly in x and for t ≥ D,
i.e., (59). As so far, we have proved Theorem 1.

V. APPLICATION TO A SURFACE DECONTAMINATION MODEL

To illustrate the feasibility of the proposed adaptive controller design,
we consider the one-dimensional model of a decontamination process
subject to an unknown input delay arising from the transport of the
sprayed neutralizer from the mobile source to the infected surface, as
shown in Fig. 1.

We consider a contaminated surface over which a decontamination
product is deposited at a controlled rate by a moving disinfectant
source S using a spraying mechanism. The density or concentration
of the polluted surface and its surrounding environment are denoted
ρ(X, t) and ρ∞, respectively. The source of the decontaminant sprayed
on the surface is denoted S(X, t), and we assume the existence of a
unknown delay D arising from the transport of the particles from the
source location to the contaminated surface. The position of the moving
sprayer along the spatial domain [−L,L] initialized at d0 is described
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Fig. 1. One-dimensional domain of a spraying cleaning.

by the relative distance d(t), namely, d(t) = d0 + βt. The dynamics
concentration of the pollutant obeys the following one-dimensional
reaction–diffusion PDE:

ρt(X, t) = ερXX(X, t) + ς(X)ρ(X, t)

+ S(X, t−D)g(X − d(t)) (80)

ρ(−L, t) = ρ(L, t) = ρ∞ (81)

where X ∈ [−L,L], t > 0, ε, L ∈ R+, and ς(·) ∈ C[−L,L]. The
function g describes the distribution of the disinfectant controlled from
the source S , e.g., it works like a source power distribution, such as the
Gaussian power distribution [37].

Remark 2: For this application, we choose Dirichlet boundary con-
ditions assuming that the domain length is long enough to neglect
change in concentration at the boundary, for Neumann or Robin bound-
ary conditions, the control design is similar with that of the Dirichlet
boundary conditions.

Introducing a coordinate system attached to the spray as x(t) =
X − d(t), we define the concentration distribution in the spray frame
as : ζ(x, t) := ρ(x+ d(t), t) = ρ(X, t) and λ(x) := ς(x+ d(t)) =
ς(X). Note that following Zheng et al. [38], one can rewrite (80) and
(81) as

ζt(x, t) = εζxx(x, t) + βζx(x, t) + λ(x)ζ(x, t)

+ g(x)S(x, t−D) (82)

ζ(−�, t) = ζ(�, t) = ρ∞ (83)

where x ∈ [−�, �], t > 0 and � ∈ R+. For the desired power distribu-
tion, S∗(x), of the source decontaminant sprayed, we can solve for the
desired density distribution ζ∗(y) by setting ζt(x, t) = 0 in (82)

εζ∗xx(x) + βζ∗x(x) + λ(x)ζ∗(x) + g(x)S∗(x) = 0 (84)

ζ∗(−�) = ζ∗(�) = ρ∞. (85)

Then, using u(x, t) = ζ(x, t)− ζ∗(x), we get the following error
system:

ut(x, t) = εuxx(x, t) + βux(x, t) + λ(x)u(x, t)

+ g(x)ΔS(x, t−D) (86)

u(−�, t) = u(�, t) = 0 (87)

where ΔS(x, t−D) = S(x, t−D)− S∗(x). System (86), (87) is
equivalent to (5), (6) with the initial data u(x, 0) = u0(x).

In the simulation results, the real value of the delay is D = 2
assuming that the upper and lower bounds are D̄ = 4 and D = 1,
respectively. In the update law (51)–(57), we set b1 = 2 and the
adaptation gain θ = 0.0005. The plant coefficients are chosen as
� = 2, ε = 10, λ = 6.5, and β = 2. The spatial distribution of the

sprayed neutralizer is defined as a Gaussian g(x) = 1
σ
√
2π
e
− x2

2σ2 , where
σ = 0.7. The simulation is performed considering the initial condition
ζ0(x) = 0.2 cos(πx

2�
) + 1.5, x ∈ (−�, �) and the boundary conditions

ζ0(−�) = ζ0(�) = ρ∞ = 0.5. The steady-state boundary conditions

Fig. 2. Closed-loop system dynamics with ζ0(x) and D̂(0). (a) Dis-
tributed state ζ(x, t) with nonadaptive control. (b) Distributed state
ζ(x, t) with D̂(0) = 4. (c) Distributed state ζ(x, t) with D̂(0) = 3. (d)
Distributed state ζ(x, t) with D̂(0) = 1.

Fig. 3. Closed-loop system dynamics with u0(x) and to D̂(0) with and
without adaptation. (a) L2-norm of the distributed state u(x, t). (b) Time
evolution of the control signal. (c) Dynamics of the update law D̂(t). (d)
Time evolution of the estimate of the unknown parameter D̂(t).

[see (85)] are also set to ζ∗ = 0.5, which gives the desired power
distribution S∗(x) = − 3.25

g(x)
.

Fig. 2 shows the convergence of the distributed plant’s state ζ(x, t)
for four different cases: nonadaptive control with a mismatched delay
D̂(t) = 4, adaptive control with an initial delay guess D̂(0) = 4, adap-
tive control with an initial delay guess D̂(0) = 3, and adaptive control
with an initial delay guess D̂(0) = 1. Fig. 3(a) shows the dynamics
of the L2-norm of the distributed state with and without adaption. The
adaptive controller enables faster convergence than the nonadaptive one
for all initial conditions. The control effort is displayed as the average
value for all x over time in Fig. 3(b) and the update law in Fig. 3(c).
Finally, Fig. 3(d) reflects a good estimate of the delay D̂(t), which is
converging to the true value D = 2.

VI. CONCLUSION

In this article, we design an adaptive controller and an unknown de-
lay parameter’s update law to stabilize a reaction–advection–diffusion
system with unknown in domain input delay. Based on a Lyapunov
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argument, the adaptively controlled plant is globally stable in the
L2 norm. The theoretical statements are supported by considering a
mobile robot that spread a neutralizer over a polluted surface to achieve
efficient decontamination. Consistent simulation results to prove the
effectiveness of the proposed method are provided. Further research
will concern the design of an observer-based delay-adaptive boundary
feedback control law for the same system.

APPENDIX A
PROOF OF PROPOSITION 1

The proof of Proposition 1 is established using the following lemmas.
Lemma 1: Let η(x, s, y, D̂) given as

η(x, s, y, D̂) = − λ1(x) + c

�f(x)

∞∑
n=1

e
−D̂

(
c+n2π2

�2

)
s

· sin
(nπ
�
y
)
sin

(nπ
�
x
)

(88)

and F (·) ∈ H1
E [−�, �], G(·, ·) ∈ L2

E([−�, �]× [0, 1]), the following
hold:∫ �

−�

∫ 1

0

∣∣∣∣
∫ �

−�

η(x, s, y, D̂)F (y)dy

∣∣∣∣
2

dsdx ≤ C1‖F‖2 (89)

∫ �

−�

∫ 1

0

∣∣∣∣
∫ �

−�

∫ s

0

f(y)η(x, s− r, y, D̂)G(y, r)drdy

∣∣∣∣
2

dsdx

≤ C2‖G‖2. (90)

Proof: Substituting (88) into the left of (89), it holds that

∫ �

−�

∣∣∣∣
∫ �

−�

η(x, s, y, D̂)F (y)dy

∣∣∣∣
2

dx

≤ (λ̄1 + c)2

�2f2

∫ �

−�

∣∣∣∣∣
∫ �

−�

∞∑
n=1

e
−D̂(c+n2π2

�2
)s

· sin
(nπ
�
y
)
sin

(nπ
�
x
)
F (y)dy

∣∣∣2 dx (91)

where f = min−�≤x≤�{|f(x)|}. Using Parseval’s theorem, we get

∫ �

−�

∣∣∣∣
∫ �

−�

η(x, s, y, D̂)F (y)dy

∣∣∣∣
2

dx

≤ 2�(λ̄1 + c)2

�2f2

∞∑
n=1

e
−2D̂(c+n2π2

�2
)s

(∫ �

−�

sin(
nπ

�
y)F (y)dy

)2

.

(92)

Hence, we have∫ �

−�

∫ 1

0

∣∣∣∣
∫ �

−�

η(x, s, y, D̂)F (y)dy

∣∣∣∣
2

dsdx

≤ 2(λ̄1 + c)2

lf2

∞∑
n=1

∫ 1

0

e
−2D̂(c+n2π2

�2
)s
ds

·
(∫ �

−�

sin(
nπ

�
y)F (y)dy

)2

≤ (λ̄1 + c)2

2Df2(c�2 + π2)
‖F‖2 (93)

where we use Parseval’s theorem again forF (x) =
∑∞

n=0 bnsin(nπx)

and bn =
∫ �

−�
F (y) sin(nπy)dy.

Similarly using Parseval’s theorem, we have

∫ �

−�

∫ 1

0

∣∣∣∣
∫ �

−�

∫ s

0

f(y)η(x, s− r, y, D̂)G(y, r)drdy

∣∣∣∣
2

dsdx

≤ (λ̄1 + c)2f̄2

2Df2(c�2 + π2)
‖G‖2 (94)

as stated in (90). Thus, this lemma is completely proved.
Similarly, we state the following lemma that can be proved using the

arguments stated earlier.
Lemma 2: Let γ(x, s, y, D̂) is a solution of well-posed PDE (26)–

(28), and F (·) ∈ H1
E [−�, �], G(·, ·) ∈ L2

E([−�, �]× [0, 1]), the fol-
lowing hold:

∫ �

−�

∫ 1

0

∣∣∣∣
∫ �

−�

γ(x, s, y, D̂)F (y)dy

∣∣∣∣
2

dsdx ≤ C3‖F‖2 (95)

∫ �

−�

∫ 1

0

∣∣∣∣
∫ �

−�

∫ s

0

f(y)γ(x, s− r, y, D̂)G(y, r)drdy

∣∣∣∣
2

dsdx

≤ C4‖G‖2. (96)

To prove Proposition 1, we derive the following estimate:∫ �

−�

∫ 1

0

v(x, s, t)2dsdx ≤ 3

∫ �

−�

∫ 1

0

z(x, s, t)2dsdx

+ 3

∫ �

−�

∫ 1

0

(∫ �

−�

η(x, s, y, D̂)ǔ(y, t)dy

)2

dsdx

+ 3D̂2

∫ �

−�

∫ 1

0

(∫ �

−�

∫ s

0

f(y)η(x, s− r, y, D̂)

·z(y, r, t)drdy)2 dsdx
≤ C1‖ǔ‖2 + 3(1 + D̄2C2)‖z‖2 (97)

where we use Lemma 1 to obtain (70). Finally, using Lemma 2, one
can establish (71), similarly.
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