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Abstract—This paper introduces the first observer-based pe-
riodic event-triggered control (PETC) and self-triggered control
(STC) for boundary control of a class of parabolic PDEs using
PDE backstepping control. We introduce techniques to convert
a certain class of continuous-time event-triggered control into
PETC and STC, eliminating the need for continuous evaluation
of the triggering function. For the PETC, the triggering function
requires only periodic evaluations to detect events, while the STC
proactively computes the time of the next event right at the
current event time using the system model and the continuously
available measurements. For both strategies, the control input
is updated exclusively at events and is maintained using a zero-
order hold between events. We demonstrate that the closed-loop
system is Zeno-free. We offer criteria for selecting an appropriate
sampling period for the PETC and for determining the time until
the next event under the STC. We prove the system’s global
exponential convergence to zero in the spatial L2 norm for both
anti-collocated and collocated sensing and actuation under the
PETC. For the STC, local exponential convergence to zero in the
spatial L2 norm for collocated sensing and actuation is proven.
Simulations are provided to illustrate the theoretical claims.

Index Terms—Backstepping control, event-triggered control
(ETC), periodic ETC, self-triggered control, parabolic PDEs.

I. INTRODUCTION

Event-triggered control (ETC) updates the control input
based on events generated by a suitable triggering mechanism
instead of at fixed intervals. This approach incorporates feed-
back into the control update tasks, allowing the control input
to be updated aperiodically and only when necessary, based
on the system’s states. In ETC, a primary challenge is avoid-
ing Zeno behavior—infinite updates in a finite time—which
is usually achieved by the careful design of the triggering
mechanism so that it is endowed with a positive lower bound
for the time between events, known as the minimal dwell-
time (MDT). Research over the last decade has expanded from
ODEs [8] to those on PDEs, generating considerable advances
(e.g. [3]–[5], [9], [13]–[15], [19]). Particularly, [14] and [15]
are the most relevant to the present study.

A significant limitation of ETC for both ODEs and PDEs is
the necessity for continuous-time evaluation of the triggering
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function to detect events, which is not ideal for digital im-
plementations. These strategies are referred to as continuous-
time ETC (CETC). To address this limitation, two alternative
approaches have been developed: periodic event-triggered
control (PETC) which checks the event-triggering function
periodically and decides on control updates [6], and self-
triggered control (STC) which proactively calculates the next
event time at the current event time, using system states and
the knowledge of the system’s dynamics [8]. Recent works on
both PETC [2], [6], [7], [20] and STC [1], [10], [18], [21] of
ODE systems have surfaced. However, their use in controlling
PDE plants remains limited, with only a few papers addressing
infinite-dimensional systems [16], [17]. Utilizing semigroup
theory, [17] provides a full-state feedback PETC for infinite
dimensional systems with unbounded control operators and
point actuation whereas [16] provides a full-state feedback
STC for infinite dimensional systems with bounded control
operators and spatially distributed actuation.

This contribution introduces the first observer-based PETC
and STC for boundary control of a class of parabolic PDEs
using PDE backstepping approach1. Specifically, we present
observer-based PETC designs when the boundary sensing
and actuation are either collocated or anti-collocated and an
observer-based STC design with collocated boundary sensing
and actuation. Our designs are far from trivial and encompass
all possible configurations of boundary sensing and actuation
but anti-collocated sensing and actuation under STC.

The PETC results from a careful redesign of the continuous-
time triggering function used in the CETC [14], [15] to
allow for periodic evaluation only. CETC approaches endowed
with MDTs, such as those described in [4], [5], [9], [13]–
[15], [19], might seem operable in a PETC configuration by
permitting only periodic evaluations of the CETC triggering
function, with a period that is less than or equal to the MDT.
Indeed, following a control update triggered by an event,
it is not necessary to check the CETC triggering function
until a period equivalent to the MDT has elapsed, because
during this time, the function continues to satisfy the required
condition. However, once this period has passed, the triggering
function could violate the required condition at any moment,
indicating that continuous evaluation of the triggering function
is absolutely necessary after a period equivalent to the MDT
following an event to ensure that the condition is continuously

1Full-state feedback PETC and STC with global exponential convergence
results were presented in [11] and [12], respectively.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3419639

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on September 09,2024 at 02:27:22 UTC from IEEE Xplore.  Restrictions apply. 



2

met. This implies that the simplistic approach of periodically
checking the CETC triggering function at intervals less than or
equal to the MDT does not suffice to guarantee the continuous
satisfaction of the required condition. Thus, novel triggering
functions designed for periodic evaluation are necessary.

We derive a novel periodic event triggering function requir-
ing only periodic evaluations by finding an upper bound of
the underlying continuous-time triggering function between
two consecutive periodic evaluations. Subsequently, an explicit
upper-bound of the allowable sampling period for periodic
evaluation of the triggering function is obtained. Since the
triggering function is evaluated periodically, and the control
input is updated only when the function satisfies a certain
condition upon evaluation, Zeno behavior is inherently absent.
Moreover, it is rigorously proven that the closed-loop system
well-posedness and convergence under the CETC are pre-
served under the PETC. Specifically, the closed-loop signals
under both CETC and PETC globally exponentially converges
to zero in the spatial L2 norm at the same rate.

The proposed STC consists of a uniformly and positively
lower-bounded function that accepts several inputs involving
the observer states, which, when evaluated at an event time,
outputs the waiting time until the next event. The design
of the positive function requires upper and lower bounds of
constituent variables of the triggering function of the CETC.
Since the function is uniformly and positively lower-bounded,
the closed-loop system is Zeno-free by design. Moreover, the
well-posedness of the closed-loop system under the STC is
established. It is also proven that the closed-loop system under
the STC exponentially converges to zero in the spatial L2 norm
locally at the same rate as its CETC counterpart.

Notation: By C0(A; Ω), we denote the class of continuous
functions on A ⊆ Rn, which takes values in Ω ⊆ R. By
Ck(A; Ω), where k ≥ 1, we denote the class of continuous
functions on A, which takes values in Ω and has continu-
ous derivatives of order k. L2(0, 1) denotes the equivalence
class of Lebesgue measurable functions f : [0, 1] → R
such that ∥f∥ =

( ∫ 1

0
|f(x)|2

)1/2
< ∞. H1(0, 1) denotes

the equivalence class of Lebesgue measurable functions f :
[0, 1] → R such that

∫ 1

0
f2(x)dx +

∫ 1

0
f2
x(x)dx < ∞. Let

u : [0, 1]×R+ → R be given. u[t] denotes the profile of u at
certain t ≥ 0, i.e.,

(
u[t]

)
(x) = u(x, t), for all x ∈ [0, 1]. For

an interval J ⊆ R+, the space C0
(
J ;L2(0, 1)

)
is the space

of continuous mappings J ∋ t → u[t] ∈ L2(0, 1).

II. PRELIMINARIES AND CONTINUOUS-TIME
EVENT-TRIGGERED CONTROL (CETC)

Consider the following 1-D reaction-diffusion sampled-data
boundary control system with constant coefficients:

ut(x, t) = εuxx(x, t) + λu(x, t), for x ∈ (0, 1), (1)
θ1ux(0, t) = −θ2u(0, t), (2)
ux(1, t) = −qu(1, t) + Uω

j , (3)

for all t ∈ (tωj , t
ω
j+1), j ∈ N, where θ1θ2 = 0, θ1 +

θ2 = 1, “ω” ∈ {“c”, “p”, “s”}, and tω0 = 0. The sets
{tcj}j∈N, {tpj}j∈N, and {tsj}j∈N are event sequences from
continuous-time event-triggering, periodic event-triggering,

and self-triggering mechanisms. The initial condition is u[0] ∈
L2(0, 1), and the parameters ε, λ, q are all positive. The
inputs U c

j , U
p
j , and Us

j are CETC, PETC, and STC inputs,
respectively, held constant for t ∈ [tωj , t

ω
j+1), j ∈ N. Note

that θ1 and θ2 are either 0 or 1 and θ1 ̸= θ2. The case
θ1 = 1, θ2 = 0 leads to Neumann boundary condition at x = 0
whereas θ1 = 0, θ2 = 1 leads to Dirichlet boundary condition
at x = 0.

In [14] and [15], the authors develop observers for the
system (1)-(3) using boundary measurements. The former
addresses anti-collocated boundary sensing and actuation with
u(0, t) as the measurement, while the latter focuses on col-
located boundary sensing and actuation with u(1, t) as the
measurement. These designs are presented below:

ût(x, t) =εûxx(x, t) + λû(x, t)

+ p1(x)
(
θ1ũ(0, t) + θ2ũ(1, t)

)
, for x ∈ (0, 1),

(4)
θ1ûx(0, t) = −θ2û(0, t) + θ1p10ũ(0, t), (5)
ûx(1, t) = −qû(1, t) + Uω

j + θ2p10ũ(1, t), (6)

for all t ∈ (tωj , t
ω
j+1), j ∈ N, where û[0] ∈ L2(0, 1) and

ũ(x, t) := u(x, t)− û(x, t), (7)

is the observer error. Here, the case θ1 = 1, θ2 = 0
results in anti-collocated sensing and actuation, and the case
θ1 = 0, θ2 = 1 results in collocated sensing and actuation.
The terms p1(x) and p10 are observer gains determined using
the PDE backstepping technique equipped with the Volterra
transformation:

ũ(x, t) = w̃(x, t)−
∫ θ1x+θ2

θ2x

P (x, y)w̃(y, t)dy, (8)

with its inverse:

w̃(x, t) = ũ(x, t) +

∫ θ1x+θ2

θ2x

Q(x, y)ũ(y, t)dy, (9)

for 0 ≤ θ2x+ θ1y ≤ θ1x+ θ2y ≤ 1. Details on the bounded
observer gains p1(x) and p10 as well as the bounded gain
kernels P (x, y) and Q(x, y) are found in [14] and [15].

The well-posedness of the closed-loop system (1)-(7) with
piecewise constant inputs between two sampling instants is
provided in the following proposition.
Proposition 1 ( [14]). For every u[tωj ], û[t

ω
j ] ∈ L2(0, 1),

there exist unique solutions u, û : [tωj , t
ω
j+1] × [0, 1] →

R between two time instants tωj and tωj+1 such that
u, û ∈ C0([tωj , t

ω
j+1];L

2(0, 1)) ∩ C1((tωj , t
ω
j+1) × [0, 1]) with

u[t], û[t] ∈ C2([0, 1]) which satisfy (2),(3),(5),(6) for t ∈
(tωj , t

ω
j+1] and (1), (4) for t ∈ (tωj , t

ω
j+1], x ∈ (0, 1).

Assumption 1. The parameters q, λ, and ε satisfy the follow-
ing relation:

q >
λ

2ε
+

θ1
2
. (10)

Remark 1. Assumption 1 is required to avoid the use of
the signal u(1, t) in the nominal control law for which it is
impossible to obtain a useful bound on its rate of change.
Furthermore, It is worth mentioning that an eigenfunction
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expansion of the solution of (1)-(3) with Uω
j = 0 (zero input)

shows that the system is unstable when λ > επ2/4θ1 , no
matter what q > 0 (see Remark 1 in [14] and [15]). □

In [14] and [15], the authors propose the following sampled-
data boundary control law to be used in conjunction with
event-triggering:

Uω
j :=

∫ 1

0

k(y)û(y, tωj )dy, (11)

for t ∈ [tωj , t
ω
j+1), j ∈ N where k(y) is the control gain

found using the PDE backstepping technique equipped with
the Volterra transformation:

ŵ(x, t) = û(x, t)−
∫ x

0

K(x, y)û(y, t)dy, (12)

with its inverse:

û(x, t) = ŵ(x, t) +

∫ x

0

L(x, y)ŵ(y, t)dy, (13)

for 0 ≤ y ≤ x ≤ 1. For further details on the bounded control
gain k(x) as well as the bounded gain kernels K(x, y) and
L(x, y), the readers are referred to [14] and [15].

The difference between the sampled-data and the
continuous-time control input, termed the input holding
error, is defined by

d(t) :=

∫ 1

0

k(y)
(
û(y, tωj )− û(y, t)

)
dy, (14)

where t ∈ [tωj , t
ω
j+1) and j ∈ N.

The authors of [14], [15] present a continuous-time event-
triggering mechanism to determine the set of event times
{tcj}j∈N using d(t) and a dynamic variable m(t) via the
following rule:

tcj+1 = inf
{
t ∈ R+|t > tcj ,Γ

c(t) > 0, j ∈ N
}
, (15)

with tc0 = 0. The function Γc(t) is defined as

Γc(t) := d2(t)− γm(t), (16)

where γ > 0 is an event-trigger design parameter. The variable
m(t) evolves according to the ODE

ṁ(t) =− ηm(t)− ρd2(t) + β1∥û[t]∥2 + β2û
2(1, t)

+ θ1β3ũ
2(0, t) + θ2β3ũ

2(1, t),
(17)

valid for all t ∈ (tcj , t
c
j+1), j ∈ N with m(tc0) = m(0) > 0

and m(tc−j ) = m(tcj) = m(tc+j ), and η, ρ, β1, β2, β3 > 0 are
event-trigger parameters.
Assumption 2 (Event-trigger parameter selection). The pa-
rameters γ, η > 0 are design parameters, and β1, β2, β3 > 0
are chosen such that

β1 =
α1

γ(1− σ)
, β2 =

α2

γ(1− σ)
, β3 =

α3

γ(1− σ)
, (18)

where σ ∈ (0, 1) and

α1 = 4

∫ 1

0

(
εk′′(y) + εk(1)k(y) + λk(y)

)2

dy, (19)

α2 = 4
(
εqk(1) + εk′(1)

)2
, (20)

α3 = 4
(λ(θ1k(0) + θ2k(1)

)
2

+

∫ 1

0

k(y)p1(y)dy
)2

, (21)

Subject to Assumption 1, the parameter ρ > 0 is chosen as

ρ =
εκ1B

2
, (22)

for B, κ1 > 0 chosen such that B
(
εmin

{
q− λ

2ε −
θ1
2 ,

1
2

}
−

ε
2κ1

− λ
(
5θ1+2θ2

)
8κ2

− ∥g∥2

κ3

)
− 2β1L̃

2 − 2β2 − 4β2Ľ
2 > 0,

for some κ2, κ3 > 0, where g(x) = p1(x) − θ1λ
2 K(x, 0) −∫ x

0
K(x, y)p1(y)dy, L̃ = 1 +

( ∫ 1

0

∫ x

0
L2(x, y)dydx

)1/2
and

Ľ =
( ∫ 1

0
L2(1, y)dy

)1/2
with K(x, y) and L(x, y) being the

gain kernels of the backstepping transformations (12) and
(13). Note from Assumption 1 that q − λ/2ε− θ1/2 > 0.
Theorem 1 (Results under CETC [14], [15]). Consider the
CETC approach (11),(14)-(17) under Assumption 1, which
generates a set of event-times Ic = {tcj}j∈N with tc0 = 0.
It holds that

Γc(t) ≤ 0 for all t ∈
[
0, sup(Ic)

)
, (23)

Consequently, given appropriate choices for the event-trigger
parameters γ,η,β1,β2,β3,ρ > 0, the followings hold:
R1: The set of event-times Ic generates an increasing se-

quence for any η, γ, ρ > 0 and β1, β2, β3 > 0 satisfying
(18). Specifically, it holds that tcj+1− tcj ≥ τ > 0, j ∈ N
where

τ =
1

a
ln
(
1 +

σa

(1− σ)(a+ γρ)

)
. (24)

Here σ ∈ (0, 1) appears in the relation (18), and

a = 1 + ρ1 + η > 0, (25)

where
ρ1 = 4ε2k2(1). (26)

As j → ∞, it follows that tcj → ∞, thereby excluding
Zeno behavior.

R2: For every u[0], û[0] ∈ L2(0, 1), there exist unique
solutions u, û : R+ × [0, 1] → R such that u, û ∈
C0(R+;L

2(0, 1) ∩ C1(Jc × [0, 1]) with u[t], û[t] ∈
C2([0, 1]) which satisfy (2),(3),(5),(6) for all t > 0 and
(1), (4) for all t > 0, x ∈ (0, 1), where Jc = R+\Ic.

R3: The dynamic variable m(t) governed by (17) with
m(0) > 0 satisfies m(t) > 0 for all t > 0.

R4: As a result of R1-R3 and under Assumption 2, the closed-
loop system (1)-(7) globally exponentially converges to
zero in the spatial L2 norm satisfying

∥u[t]∥+∥û[t]∥ ≤ Me−
b∗
2 t

√
∥u[0]∥2 + ∥û[0]∥2 +m(0),

(27)
for all t > 0 and for some M, b∗ > 0.

III. PERIODIC EVENT-TRIGGERED CONTROL (PETC) AND
SELF-TRIGGERED CONTROL (STC)

A. Periodic Event-triggered Control (PETC)

In this subsection, we propose a PETC approach for the
system described by equations (1)-(7) subject to Assumption
1. This approach is applicable under both anti-collocated
(θ1 = 1, θ2 = 0) and collocated (θ1 = 0, θ2 = 1) sensing and
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actuation configurations. Our design draws from the CETC
scheme in (11), (14)-(17). To implement this, we redesign the
triggering function Γc(t), as specified in (16), into a new trig-
gering function Γp(t) which facilitates periodic evaluations.
Furthermore, we determine a maximum allowable sampling
period h > 0 for the periodic event-trigger. The proposed
periodic event-triggering mechanism determines the set of
event-times {tpj}j∈N via the following rule:

tpj+1 = inf
{
t ∈ R+|t > tpj ,Γ

p(t) > 0, t = nh,

h > 0, n ∈ N
}
,

(28)

with tp0 = 0. Here, h is the sampling period selected as

0 < h ≤ τ, (29)

where τ is given by (24) and Γp(t) is given by

Γp(t) =(a+ γρ)eahd2(t)− γρd2(t)− γam(t). (30)

Here, d(t) is given by (14) for t ∈ [tpj , t
p
j+1), j ∈ N, m(t)

satisfies (17) for t ∈ (tpj , t
p
j+1), j ∈ N, and a is given by (25).

Note that, under the continuous-time event-trigger (15)-(17),
the triggering function Γc(t) needs to be checked continuously
to detect events. In contrast, with the periodic event-trigger
(28)-(30), the triggering function Γp(t) requires only periodic
evaluations for event detection.
Theorem 2 (Results under PETC). Consider the PETC
approach (11),(28)-(30) under Assumption 1, which generates
an increasing set of event-times Ip = {tpj}j∈N with tp0 = 0.
For every u[0], û[0] ∈ L2(0, 1), there exist unique solutions
u, û : R+ × [0, 1] → R such that u, û ∈ C0(R+;L

2(0, 1) ∩
C1(Jp × [0, 1]) with u[t], û[t] ∈ C2([0, 1]) which satisfy
(2),(3),(5),(6) for all t > 0 and (1), (4) for all t > 0, x ∈ (0, 1),
where Jp = R+\Ip. Given appropriate choices for the event-
trigger parameters γ,η,β1,β2,β3,ρ > 0, the followings hold:
R1: For any η, γ, ρ > 0 and β1, β2, β3 > 0 satisfy-

ing (18), the function Γc(t) given by (16) satisfies
Γc(t) ≤ 0 for all t > 0 along the solution of (1)-
(7),(11),(14),(17),(28)-(30).

R2: The dynamic variable m(t) governed by (17) with
m(0) > 0 satisfies m(t) > 0 for all t > 0 along the
solution of (1)-(7),(11),(14),(28)-(30).

R3: Under Assumption 2, the closed-loop system (1)-(7)
globally exponentially converges to zero in the spatial
L2 norm satisfying (27).

The complete proof is provided in the Appendix-A.

B. Self-triggered Control (STC)

In this subsection, we propose an STC approach for the
system described by equations (1)-(7) under collocated sensing
and actuation configuration (θ1 = 0, θ2 = 1) and subject to
Assumption 1. Furthermore, we make the following assump-
tion on initial data.
Assumption 3. The initial conditions of the plant (1)-(3) and
the observer (4)-(6) with θ1 = 0, θ2 = 1 satisfy u[0], û[0] ∈
H1(0, 1). Further, for some known constants Ψ1,Ψ2 > 0, it
holds that

∥u[0]∥ ≤ Ψ1, and ∥ux[0]∥ ≤ Ψ2. (31)

Our design draws from the CETC scheme in (11), (14)-
(17). We propose a function G(·, ·) that is uniformly positive
and lower-bounded, and which depends on the observer states.
When this function is evaluated at the current event time,
it yields the waiting time until the subsequent event. The
proposed self-triggering mechanism determines the sequence
of event times {tsj}j∈N according to the following rule:

tsj+1 = tsj +G
(
∥û[tsj ]∥,m(tsj)

)
, (32)

with ts0 = 0 where G(·, ·) > 0 is a uniformly and positively
lower-bounded function

G(∥û[tsj ]∥,m(tsj))

:= max

{
τ,

1

2ϱ+ η
ln

(γm(tsj) +
γρH(tsj)

2ϱ+η

H(tsj) +
γρH(tsj)

2ϱ+η

)}
,

(33)

In (33), H(t) is given by

H(t) = 2∥k∥2
(
2∥û[t]∥2 + ε2∥k∥2

λϱ
∥û[t]∥2 + (Ψ∗

0)
2e−2σ∗t

ϱ

)
,

(34)
where

ϱ = λ+
∥p1∥2

2
, σ∗ ∈

(
0,

επ2

4

]
, (35)

and Ψ∗
0 is given by

Ψ∗
0 =

1√
2

((
(M1 + 1)Ω1 +Ω2

)
Ψ1 +Ψ2

+
(
(M1 + 1)Ω1 +Ω2

)
∥û[0]∥+ ∥ûx[0]∥

)
×

√(ε2p210
λ

+
1

2

)
.

(36)

In (36), Ψ1,Ψ2 > 0 are the known bounds of ∥u[0]∥
and ∥ux[0]∥, respectively, as stated in Assumption 3 and
M1,Ω1,Ω2 are given by

M1 = 2q +
2εq2

επ2/4 + 2εq − σ∗ , (37)

Ω1 = 1 +

√∫ 1

0

∫ 1

x

Q2(x, y)dydx, (38)

and

Ω2 = max
x∈[0,1]

|Q(x, x)|+

√∫ 1

0

∫ 1

x

Q2
x(x, y)dydx, (39)

where Q(x, y) is the gain kernel of the inverse backstepping
transformation (9). Referring to [15], one can show that
maxx∈[0,1] |Q(x, x)| = λ/2ε.
Theorem 3 (Results under STC). Consider the STC ap-
proach (11),(32)-(39) under Assumptions 1 and 3, which
generates an increasing set of event-times Is = {tsj}j∈N
with ts0 = 0. For every u[0], û[0] ∈ L2(0, 1), there exist
unique solutions u, û : R+ × [0, 1] → R such that u, û ∈
C0(R+;L

2(0, 1) ∩C1(Js × [0, 1]) with u[t], û[t] ∈ C2([0, 1])
which satisfy (2),(3),(5),(6) for all t > 0 and (1), (4) for all
t > 0, x ∈ (0, 1), where Js = R+\Is. Given appropriate
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Fig. 1: Evolution of ∥u[t]∥+ ∥û[t]∥
.

Fig. 2: Boundary control inputs.

choices for the event-trigger parameters γ,η,β1,β2,β3,ρ > 0,
the followings hold:
R1: For any η, γ, ρ > 0 and β1, β2, β3 > 0 satisfy-

ing (18), the function Γc(t) given by (16) satisfies
Γc(t) ≤ 0 for all t > 0 along the solution of (1)-
(7),(11),(14),(17),(32)-(39).

R2: The dynamic variable m(t) governed by (17) with
m(0) > 0 satisfies m(t) > 0 for all t > 0 along the
solution of (1)-(7),(11),(14),(32)-(39).

R3: Under Assumption 2, the closed-loop system (1)-(7)
locally exponentially converges to zero in the spatial L2

norm satisfying (27).
The complete proof is provided in the Appendix-B.
Remark 2. When u[0] and û[0] are in H1(0, 1), they are also
in L2(0, 1). As a result, the well-posedness of the closed-loop
system (1)-(6), in the context of Theorem 3, directly follows
from Proposition 1. The solution is constructed iteratively
between consecutive event times.

IV. NUMERICAL SIMULATIONS

We consider an open loop unstable reaction-diffusion PDE
with ε = 0.001, λ = 0.01, q = 5.1, θ1 = 0, θ2 = 1 and the
initial conditions u[0] = 5x2(x− 1)2 and û[0] = x2(x− 1)2.
For numerical simulations, both the plant and the observer are
discretized with a uniform step size of ∆x = 0.005 for the
space variable. The discretization with respect to time is done
using the implicit Euler scheme with step size ∆t = 0.001s.
The parameters for the CETC and PETC are chosen as follows:
m(0) = 10−4, γ = 1, η = 1 and σ = 0.9. We compute using
(19)-(21) that α1 = 0.021;α2 = 0.0131;α3 = 0.7971. There-
fore, from (18), we obtain β1 = 0.2095;β2 = 0.1309;β3 =

Fig. 3: Dwell-times under CETC and PETC.

Fig. 4: Dwell-times under STC.

7.9706. Let us choose κ1 = 25 and B = 7.7304 × 104, and
then, from (22), we obtain ρ = 966.3. The parameters for
the STC are chosen as follows: m(0) = 10−4, γ = 1012, η =
10−6, σ = 0.9,Ψ1 = 0.1992,Ψ2 = 0.6901, and σ∗ = επ2/4.
Therefore, from (18), we obtain β1 = 2.095 × 10−13;β2 =
1.31 × 10−13;β3 = 7.9706 × 10−12. Let us choose κ1 = 25
and B = 7.7304 × 10−8, and then, from (22), we obtain
ρ = 9.6630 × 10−10. For all the strategies, the MDT τ
calculated using (24) is 0.009s. For the PETC, we choose
the sampling period for evaluating the triggering function as
h = 0.009s.

Fig. 1 shows the response of the closed-loop system under
CETC, PETC, and STC. Fig. 2 shows the corresponding
control inputs. We can observe that the spatial L2 norm of the
closed-loop signals under CETC, PETC, and STC converge
to zero at roughly similar rates, despite PETC and STC not
requiring continuous evaluation of a triggering function, as
opposed to CETC. In Figs. 3 and 4, we can observe that
both CETC and PETC trigger events at similar rates, whereas
STC triggers more frequent events than CETC and PETC
initially. However, as the closed-loop system approaches the
equilibrium, the frequency of events under STC significantly
becomes lower than those under CETC and PETC.

V. CONCLUSIONS

In this paper, we have proposed novel observer-based PETC
and STC strategies for a class of reaction-diffusion systems.
Specifically, we have presented observer-based PETC designs
when the sensing and actuation are either collocated or anti-
collocated and an observer-based STC design with collo-
cated sensing and actuation. The key idea of the developed
methods is the transformation of a class of continuous-time
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dynamic event-triggers which require continuous evaluation
to periodic event-triggers and self-triggers. For the PETC,
we have obtained an explicit upper-bound of the allowable
sampling period of the periodic event-trigger. For the STC,
we have designed a uniformly and positively lower-bounded
function which, when evaluated at the time of an event, outputs
the waiting time until the next event. The well-posedness of
the closed-loop system under both PETC and STC has been
proven for all cases. Further, we have proven that the global
exponential convergence to zero in the spatial L2 norm under
the CETC is preserved under the proposed PETC. The STC
ensures that the closed-loop system exponentially converges
to zero in the spatial L2 norm locally at a comparable rate
to its CETC counterpart. The conducted numerical simulation
has illustrated the validity of the theoretical developments.

APPENDIX

A. Proof of Theorem 2
The well-posedness of the closed-loop system (1)-(6) under

the PETC, in the sense of Theorem 2, directly follows from
Proposition 1. The solution is constructed iteratively between
consecutive event times. To streamline the rest of the proof of
Theorem 2, we first present Lemmas 1 and 2.
Lemma 1. Consider the PETC approach (11),(28)-(30) which
generates an increasing set of event-times Ip = {tpj}j∈N with
tp0 = 0. For d(t) given by (14), it holds that

ḋ2(t) ≤ρ1d
2(t) + α1∥û[t]∥2 + α2û

2(1, t) + θ1α3ũ
2(0, t)

+ θ2α3ũ
2(1, t),

(40)

along the solution of (1)-(7) for all t ∈
(
nh, (n + 1)h

)
and

any n ∈
[
tpj/h, t

p
j+1/h

)
⊂ N. Here α1, α2, α3, ρ1 > 0 are

given by (19)-(21),(26), respectively.
The proof is very similar to that of Lemma 2 in [14], and

hence omitted.
Lemma 2. Consider the PETC approach (11),(28)-(30) under
Assumption 1, which generates an increasing set of event-times
{tp}j∈N with tp0 = 0. For any η, γ, ρ > 0 and β1, β2, β3 > 0
satisfying (18), Γc(t) given by (16) satisfies

Γc(t) ≤ 1

a

(
(a+ γρ)d2(nh)ea(t−nh) − γρd2(nh)

− γam(nh)
)
e−η(t−nh),

(41)

where a is given by (25), and h is the sampling period chosen
as in (29), along the solution of (1)-(7),(11),(14),(17),(28)-(30)
for all t ∈

[
nh, (n+ 1)h

)
and any n ∈

[
tpj/h, t

p
j+1/h

)
⊂ N.

Proof of Lemma 2. Taking the time derivative of (16) in t ∈
(nh, (n + 1)h) and n ∈

[
tpj/h, t

p
j+1/h

)
⊂ N, using Young’s

inequality, the relation (40), the dynamics of m(t) given by
(17), and (16) to substitute for d2(t), we show that

Γ̇c(t) ≤(1 + ρ1 + γρ)Γc(t) + γ(a+ γρ)m(t)

− (γβ1 − α1)∥û[t]∥2 − (γβ2 − α2)û
2(1, t)

− (γβ3 − α3)
(
θ1ũ

2(0, t) + θ2ũ
2(1, t)

)
.

Noting that both sides of this inequality are well-behaved in
t ∈ (nh, (n + 1)h) and n ∈

[
tpj/h, t

p
j+1/h

)
⊂ N, we assert,

there exists a non-negative function ι(t) ∈ C0
(
(tpj , t

p
j+1);R+

)
such that
Γ̇c(t) =(1 + ρ1 + γρ)Γc(t) + γ(a+ γρ)m(t)

− (γβ1 − α1)∥û[t]∥2 − (γβ2 − α2)û
2(1, t)

− (γβ3 − α3)
(
θ1ũ

2(0, t) + θ2ũ
2(1, t)

)
− ι(t),

(42)

for all t ∈ (nh, (n + 1)h) and n ∈
[
tpj/h, t

p
j+1/h

)
⊂ N.

Furthermore, using (16) to substitute for d2(t), we rewrite the
dynamics of m(t) as

ṁ(t) =− ρΓc(t)− (γρ+ η)m(t) + β1∥û[t]∥2

+ β2û
2(1, t) + β3

(
θ1ũ

2(0, t) + θ2ũ
2(1, t)

)
,

(43)

for t ∈ (nh, (n + 1)h) and n ∈
[
tpj/h, t

p
j+1/h

)
⊂ N.

Then, concatenating the equations (42) and (43), we obtain
the following ODE system

ż(t) = Az(t) + v(t), (44)

where

z(t) =

[
Γc(t)
m(t)

]
, A =

[
1 + ρ1 + γρ γ

(
a+ γρ

)
−ρ −(γρ+ η)

]
,

v(t) =


(− (γβ1 − α1)∥û[t]∥2 − (γβ2 − α2)û

2(1, t)
− (γβ3 − α3)

(
θ1ũ

2(0, t) + θ2ũ
2(1, t)

)
− ι(t)

)
(
β1∥û[t]∥2 + β2û

2(1, t)

+ β3

(
θ1ũ

2(0, t) + θ2ũ
2(1, t)

))
 .

From (44), we obtain that

z(t) = eA(t−nh)z(nh) +

∫ t

nh

eA(t−ξ)v(ξ)dξ,

for all t ∈ [nh, (n+ 1)h) and n ∈
[
tpj/h, t

p
j+1/h

)
⊂ N, using

which we obtain

Γc(t) = CeA(t−nh)z(nh) +

∫ t

nh

CeA(t−ξ)v(ξ)dξ,

where C =
[
1 0

]
. The matrix A has two distinct eigenvalues

−η and 1+ρ1. Therefore, using the matrix diagonalization of
A and after some simplifications, it can be shown that

CeA(t−ξ)v(ξ) = −
(
(γβ1 − α1)g1(t− ξ)− β1g2(t− ξ)

)
∥û[ξ]∥2

−
(
(γβ2 − α2)g1(t− ξ)− β2g2(t− ξ)

)
û2(1, ξ)

− θ1
(
(γβ3 − α3)g1(t− ξ)− β3g2(t− ξ)

)
ũ2(0, t)

− θ2
(
(γβ3 − α3)g1(t− ξ)− β3g2(t− ξ)

)
ũ2(1, t)

− g1(t− ξ)ι(ξ),

where
g1(t) =

1

a

(
− γρ+ (a+ γρ)eat

)
e−ηt,

and
g2(t) =

γ(a+ γρ)

a

(
− 1 + eat

)
e−ηt.

We can easily observe that g1(t) > 0 for all t ≥ 0.
Furthermore, noting that γβi/αi = 1/(1−σ), i = 1, 2, 3 from
(18), and recalling (24), we show that(

γβi − αi

)
g1(t− ξ)− βig2(t− ξ)

=
αi(a+ γρ)

a

(
1 +

σa

(1− σ)(a+ γρ)
− ea(t−ξ)

)
e−η(t−ξ)

=
αi(a+ γρ)

a

(
eaτ − ea(t−ξ)

)
e−η(t−ξ),
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for i = 1, 2, 3. As nh ≤ ξ ≤ t < (n + 1)h, and h ≤ τ , we
have that (γβi−αi)g1(t−ξ)−βig2(t−ξ) > 0 for i = 1, 2, 3.
Thus, we argue that CeA(t−ξ)v(ξ) ≤ 0 for all t, ξ such that
nh ≤ ξ ≤ t < (n + 1)h, and n ∈

[
tpj/h, t

p
j+1/h

)
⊂ N.

Considering this, it can be derived for t ∈ [nh, (n+1)h) that

Γc(t) ≤ CeA(t−nh)z(nh)

≤ g1(t− nh)Γc(nh) + g2(t− nh)m(nh)

≤ 1

a

(
− γ(a+ γρ)m(nh)− γρΓc(nh)

+ (a+ γρ)
(
Γc(nh) + γm(nh)

)
ea(t−nh)

)
e−η(t−nh).

By substituting for Γc(nh) using (16), we obtain the inequality
(41) that is valid for t ∈ [nh, (n + 1)h). This completes the
proof of Lemma 2 ■

Now let us continue with the proof of Theorem 2. Assume
that an event has triggered at t = tpj and m(tpj ) > 0. Then, let
us analyze the behavior of Γc(t) and m(t) in t ∈ [tpj , t

p
j+1)

along the solution of (1)-(7),(11),(14),(17),(28)-(30). After the
event at t = tpj , the control law is updated. Thus, we have
from (16) that Γc(tpj ) = −γm(tpj ) < 0. Consequently, Γc(t)
will at least remain non-positive until t = tpj + τ where τ
is the MDT given by (24) (see R1 of Theorem 1). Thus,
Γc(t) will definitely remain non-positive in t ∈ [tpj , t

p
j + h) as

h ≤ τ . However, at each t = nh, n > 0, the periodic event-
trigger given by (28)-(30) is evaluated, and only if Γp(nh) > 0
that an event is triggered, and the control input is updated. If
Γp(nh) ≤ 0, then an update would not be required as Γc(t)
will be non-positive due to the relation (41) (Note that the right
hand side of (41) is definitely non-positive when Γp(nh) ≤ 0).
Thus, Γc(t) will in fact remain non-positive at least until
t = tpj+1 where Γp(tp−j+1) > 0. As Γc(t) ≤ 0 for t ∈ [tpj , t

p
j+1),

we write from (16) that d2(t) ≤ γm(t) for t ∈ [tpj , t
p
j+1).

Then, considering the dynamics of m(t) given by (17), we
get ṁ(t) ≥ −(η + γρ)m(t) for t ∈ (tpj , t

p
j+1), which leads

to m(t) ≥ e−(η+γρ)(t−tpj )m(tpj ) > 0 for t ∈ [tpj , t
p
j+1). The

time continuity of m(t) leads to m(tp−j+1) = m(tpj+1) > 0.
Therefore, after the control input has been updated at t = tpj+1,
we obtain the equality Γc(tpj+1) = −γm(tpj+1) < 0. In a
similar way, we can analyze the behavior of Γc(t) and m(t)
in all t ∈ [tpj , t

p
j+1) for any j ∈ N starting from the first

event at tp0 = 0 where m(0) > 0 to prove that Γc(t) ≤ 0
for all t ∈ [tpj , t

p
j+1), j ∈ N and m(t) > 0 for all t > 0.

Thus, the global L2-exponential convergence of the closed-
loop system to zero satisfying the estimate (27) follows from
R4 of Theorem 1. This completes the proof of Theorem 2. ■

B. Proof of Theorem 3
The well-posedness of the closed-loop system (1)-(6) with

θ1 = 0, θ2 = 1 under the STC is discussed in Remark 2. To
streamline the proof of Theorem 3, we first present Lemma 3.
Lemma 3. Consider the STC approach (32)-(39) under As-
sumptions 1 and 3, which generates an increasing set of event
times {tsj}j∈N with tsj = 0. Then, for the error d(t) given by
(14) and m(t) governed by (17), the followings hold:

d2(t) ≤ H(tsj)e
2ϱ(t−tsj), (45)

and

m(t) ≥ m(tsj)e
−η(t−tsj)−

ρH(tsj)

2ϱ+ η
e−η(t−tsj)

(
e(2ϱ+η)(t−tsj)−1

)
,

(46)
for all t ∈ [tsj , t

s
j+1), j ∈ N along the solution of (1)-(7),

where H(t) and ϱ are given by (34) and (35), respectively.
Proof of Lemma 3. Consider the positive definite function

V =
1

2

∫ 1

0

û2(x, t)dx. (47)

Taking its time derivative along the solution (4)-(6) and using
Young’s inequality and Cauchy-Schwarz inequality, we show
that

V̇ ≤− εqû2(1, t)− ε∥ûx[t]∥2 + λ∥û[t]∥2 + εh1

2
û2(1, t)

+
ε

2h1
(Us

j )
2 +

εp10
2h2

û2(1, t) +
εp10h2

2
ũ2(1, t)

+
1

2h3
ũ2(1, t) +

∥p1∥2h3

2
∥û[t]∥2,

for t ∈ (tsj , t
s
j+1), j ∈ N and some h1, h2, h3 > 0. Let us

select h1 = λ
2ε , h2 = 2εp10

λ , h3 = 1. Then, one can show

V̇ ≤− ε
(
q − λ

2ε

)
û2(1, t)− ε∥ûx[t]∥2 + ϱ∥û[t]∥2

+
ε2

λ
(Us

j )
2 +

(ε2p210
λ

+
1

2

)
ũ2(1, t),

(48)

for t ∈ (tsj , t
s
j+1), j ∈ N where ϱ > 0 is given by (35). Using

Cauchy-Schwarz inequality and (11) under the consideration
of (47), we obtain that (Us

j )
2 ≤ 2∥k∥2V (tsj). Thus, recalling

Assumption 1 from which it follows that q > λ/2ε for θ1 = 0,
we write (48) as

V̇ ≤ 2ϱV (t) +
2ε2∥k∥2

λ
V (tsj) +

(ε2p210
λ

+
1

2

)
ũ2(1, t),

(49)

for t ∈ (tsj , t
s
j+1), j ∈ N. Now let us find a known upper-bound

for |ũ(1, t)|. From Lemma 1 of [15], we obtain that ∥w̃x[t]∥ ≤(
∥w̃x[0]∥ + M1∥w̃[0]∥

)
e−σ∗t and ∥w̃[t]∥ ≤ ∥w̃[0]∥e−σ∗t for

all t ≥ 0 where w̃ is the observer error target state obtained
via (9) with θ1 = 0, θ2 = 1 (see [15] for details), M1 is given
by (37), and σ∗ is given by (35). Thus, using (8), Agmon’s
and Young’s inequalities, we obtain that

|ũ(1, t)| = |w̃(1, t)| ≤ (
√
2)−1∥w̃[t]∥+ (

√
2)−1∥w̃x[t]∥

≤ (
√
2)−1(M1 + 1)∥w̃[0]∥e−σ∗t + (

√
2)−1∥w̃x[0]∥e−σ∗t,

(50)

for all t ≥ 0. But, using (9) with θ1 = 0, θ2 = 1, and Cauchy-
Schwarz inequality, we show that ∥w̃[0]∥ ≤ Ω1∥ũ[0]∥ and
∥w̃x[0]∥ ≤ ∥ũx[0]∥ + Ω2∥ũ[0]∥ where Ω1 and Ω2 are given
by (38) and (39), respectively. Again using Cauchy-Schwarz
inequality, we obtain from (7) that ∥ũ[0]∥ ≤ ∥u[0]∥ + ∥û[0]∥
and ∥ũx[0]∥ ≤ ∥ux[0]∥+ ∥ûx[0]∥. Thus, from (50), we obtain
the following bound for ũ2(1, t)

|ũ(1, t)| ≤ Ψ0e
−σ∗t, (51)

for all t ≥ 0 where Ψ0 = (
√
2)−1

(
(M1 + 1)Ω1 +

Ω2

)
Ψ1 + (

√
2)−1Ψ2 + (

√
2)−1

(
(M1 + 1)Ω1 + Ω2

)
∥û[0]∥ +
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(
√
2)−1∥ûx[0]∥. Then, considering (51) and noting that

e−2σ∗t < e−2σ∗tsj for all t > tsj , we obtain from (49) that

V̇ (t) ≤ 2ϱV (t) +
2ε2∥k∥2

λ
V (tsj) + (Ψ∗

0)
2e−2σ∗tsj , (52)

for t ∈ (tsj , t
s
j+1), j ∈ N where Ψ∗

0 is given by (36). Therefore,
from (52), we show that

V (t) ≤e2ϱ(t−tsj)V (tsj)

+

2ε2∥k∥2

λ V (tsj) + (Ψ∗
0)

2e−2σ∗tsj

2ϱ

(
e2ϱ(t−tsj) − 1

)
,

for t ∈ [tsj , t
s
j+1), j ∈ N from which we obtain that

∥û[t]∥2

≤
(
∥û[tsj ]∥2 +

ε2∥k∥2

λϱ
∥û[tsj ]∥2 +

(Ψ∗
0)

2e−2σ∗tsj

ϱ

)
e2ϱ(t−tsj),

(53)

considering (47). Using Cauchy-Schwarz inequality and
Young’s inequality on (14), we show that d2(t) ≤
2∥k∥2∥û[tsj ]∥2 + 2∥k∥2∥û[t]∥2. Then, using (53), we obtain
(45). Considering the dynamics of m(t) given by (17) and
the relation (45), we show ṁ(t) ≥ −ηm(t)−ρH(tsj)e

2ϱ(t−tsj)

for t ∈ (tsj , t
s
j+1), j ∈ N from which we obtain (46). This

completes the proof of Lemma 3. ■
Now let us continue with the proof of Theorem 3. Consider

the triggering function Γc(t) given by (16) along the solution
of (1)-(7),(11),(14),(17),(32)-(39). Further, let us assume that
an event has occurred at t = tsj and m(tsj) > 0. Then,
as the control input is updated, it follows from (16) that
Γc(tsj) = −γm(tsj) < 0. Moreover, Γc(t) will remain non-
positive at least until t = tsj + τ , where τ is the MDT given
by (24) (see R1 of Theorem 1). We have from (45) that
d2(t) ≤ H(tsj)e

2ϱ(t−tsj) and from (46) that

γm(t) ≥γm(tsj)e
−η(t−tsj)

−
γρH(tsj)

2ϱ+ η
e−η(t−tsj)

(
e(2ϱ+η)(t−tsj) − 1

)
,

for t ∈ [tsj , t
s
j+1). Note that the RHS of (45) is an increasing

function of t whereas the RHS of (46) is a decreasing function
of t. Then, if there is a positive t† > tsj that satisfies

H(tsj)e
2ϱ(t†−tsj) = γm(tsj)e

−η(t†−tsj)

−
γρH(tsj)

2ϱ+ η
e−η(t†−tsj)

(
e(2ϱ+η)(t†−tsj) − 1

)
,

(54)

we are certain that d2(t) ≤ γm(t), i.e., Γc(t) ≤ 0 for t ∈
[tsj , t

†) (note that the LHS of (54) is an upper-bound for d2(t†),
and the RHS of (54) is a lower-bound for γm(t†)). Solving
(54) for t†, we obtain that

t† = tsj +
1

2ϱ+ η
ln

γm(tsj) +
γρH(tsj)

2ϱ+η

H(tsj) +
γρH(tsj)

2ϱ+η

 .

If t† > tsj + τ , the next event can be chosen as tsj+1 = t†. If
t† ≤ tsj + τ , the next event can be chosen as tsj+1 = tsj + τ . In
this way, since the next event time is given by (32)-(39), it is

ensured that Γc(t) ≤ 0 for t ∈ [tsj , t
s
j+1) while preventing the

occurrence of Zeno phenomenon. Then, employing the same
line of reasoning as in the proof of Theorem 2, we can show
that Γc(t) ≤ 0 for all t ∈ [tsj , t

s
j+1), j ∈ N and m(t) > 0

for all t > 0. Thus, the L2-exponential convergence to zero
satisfying the estimate (27) follows from R4 of Theorem 1.
This completes the proof of Theorem 3. ■
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