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An Adaptive Observer Design for n + 1 Coupled
Linear Hyperbolic PDEs Based on Swapping

Henrik Anfinsen, Mamadou Diagne, Ole Morten Aamo, and Miroslav Krstic

Abstract—In this paper, we use swapping design filters to bring
systems of n+ 1 partial differential equations of the hyperbolic
type to static form. Standard parameter identification laws can
then be applied to estimate unknown parameters in the boundary
conditions. Proof of boundedness of the adaptive laws are offered,
and the results are demonstrated in simulations.

I. INTRODUCTION

TTRANSPORT equations described as first order hyper-
bolic linear partial differential equations (PDEs) are used

to model various complex physical systems. Representative
engineering applications such as heat exchangers [?], trans-
mission lines [?], oil wells [?], road traffic [?] and multiphase
flow [?], [?], to mention a few, involve convection phenomena
with a spatio-temporal dynamics. Due to the wide area of
applications, such systems have been subject to extensive
research during the last decades. We refer the reader to [?],
[?], [?] (and references therein) for significant control related
results.

Recently, the backstepping method, well known from non-
linear control theory [?], has been extended to PDEs. The
key point of this approach is the introduction of an invertible
Volterra transformation that maps the original system of PDEs
into a simpler target system whose stability is easier to estab-
lish. The invertibility of the transformation, allows to state
the equivalence of stability properties for the two systems.
The backstepping method was initially developed for parabolic
PDEs [?], and has later been adopted to first order hyperbolic
systems [?]. In [?], it was extended to two coupled first order
systems, with the general n+ 1 case derived in [?]. For such
systems, n PDEs travel in one direction, with a single PDE
convecting in the opposite direction.

The stabilization result proposed in [?] has been extended
even further to general n+m systems in [?], with an arbitrary
number of PDEs in each direction and both controllers and
observers using boundary sensing only have been developed.

Adaptive control using backstepping was investigated for
parabolic PDEs in [?], where a certainty equivalence based
backstepping scheme was used. Material concerning adaptive
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backstepping on hyperbolic PDEs, however, is limited. To
the best of our knowledge, one can mainly cite [?], where a
hyperbolic partial integro-differential equation was adaptively
stabilized using boundary sensing only. Later, an adaptive
observer for hyperbolic systems was investigated in [?], where
additive disturbance terms in the boundary conditions were
estimated. The derived method was applied to a problem from
underbalanced drilling in the oil industry, estimating uncertain
parameters. Additionally, in [?], backstepping was used in
conjunction with sliding mode control to design an adaptive
controller estimating and taking into account an uncertain
parameter in the boundary condition at the same boundary
as actuation. Finally, we mention that the observers designed
for the disturbance rejection problem in [?], [?] and [?], and
for the leak detection problem in [?] can be interpreted as
adaptive observers for hyperbolic PDEs.

Generally, in estimation related problems, for both finite
and infinite dimensional systems, the well known K-filters
(or Kreisselmeier filters) which were initially suggested by G.
Kreisselmeier in [?] are used to derive the state estimate as a
static linear function of its parameters. This method was later
named swapping design and was more thoroughly investigated
in [?] for ODEs and extended to PDEs of parabolic type in [?].
To the best of our knowledge, however, it has not previously
been applied to PDEs of hyperbolic type.

In this paper, we investigate the problem of estimating the
systems states for n+1 linear hyperbolic systems of PDEs with
one boundary condition containing unknown multiplicative
and additive parameters. Measurements are assumed at the
boundaries only, with only a single measurement taken at the
boundary that is collocated with the unknown parameter. A
similar problem was solved in both [?] and [?] for unknown
additive parameters, but known multiplicative parameters. The
results were in [?] applied to a linearized version of the Drift
Flux Model (DFM) for underbalanced drilling to estimate the
pressure inside the oil and gas reservoir. As we assume both
the multiplicative and additive parameters to be unknown and
particularly for the drilling application, our approach allow for
the possibility to adapt the rate of gas and oil extraction (called
the production index), and the reservoir pressure emerging
from linearizing the DFM.

Also, in the approach of the present paper, the number of
required measurements on the boundary that is anti-collocated
with the uncertain parameters depends on the number of
unknown additive terms in the boundary condition, with all
of them known, only a single measurement is required. The
penalty for omitting the measurements at the boundary anti-
collocated with the uncertain parameters is a stronger require-
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ment of persistency of excitation for parameter convergence.
This paper is organized as follows: in Section II we present

the dynamic model and pose the estimation problem. In Sec-
tion III, we define a set of K-filters that can be used to express
the system states as linear, static combinations of the filters
and the unknown parameters and some error terms. The error
terms are in Section IV shown to converge exponentially to
zero, so that the system states expressed using the K-filters and
unknown parameters converge to their true values. This result
is formally stated in Theorem 1. From the static parameteri-
zation of the system states, standard parameter identification
laws can be used to estimate the unknown parameters. We
consider the normalized gradient update law in Theorem 2, and
prove boundedness of the parameter estimates in the general
case, and exponential convergence in the presence of persistent
excitation. Simulation examples are shown in Section VII,
while conclusions and suggested areas for further work are
offered in Section VIII.

II. PROBLEM STATEMENT

In this paper, we investigate systems of the form

∂tui(x, t) = −λi(x)∂xui(x, t) +

n∑
j=1

σij(x)uj(x, t)

+ ωi(x)v(x, t) (1)

∂tv(x, t) = µ(x)∂xv(x, t) +

n∑
j=1

θj(x)uj(x, t) (2)

with boundary conditions

ui(0, t) = qiv(0, t) + di, i = 1 . . . n (3)

v(1, t) =

n∑
j=1

ρjuj(1, t) + U(t) (4)

where, for i, j = 1 . . . n

λi, µ ∈ C1([0, 1]) (5)

σij , ωi, θi ∈ C0([0, 1]) (6)
qi, di, ρi ∈ R, (7)

and initial conditions

v0(x), u0
i (x) ∈ L2([0, 1]), i = 1 . . . n. (8)

The transport speeds are assumed to satisfy, for all x ∈ [0, 1]

−µ(x) < 0 < λ1(x) ≤ λ2(x) ≤ · · · ≤ λn(x). (9)

The aim is to estimate the boundary parameters qi and
di, i = 1 . . . n from boundary sensing only, e.g v(0, t)
and optionally ui(1, t), i = 1 . . . n. The term U(t) can be
considered a control input, although closed loop control is not
investigated in this paper. A schematic of the structure of the
system is depicted in Figure 1.

III. FROM DYNAMIC TO STATIC PARAMETRIC FORM

By introducing a set of filters, we bring the dynamic system
to a static form. To ease readability, we define, for i = 1 . . . n

ρ̄i =

{
ρi if ui(1, t) is not measured
0 otherwise

(10)

where ρi are the boundary parameters from (4). For i =
1 . . . n, we introduce the following input filters

∂tηi(x, t) = −λi(x)∂xηi(x, t) +

n∑
j=1

σij(x)ηj(x, t)

+ ωi(x)ϕ(x, t)− ki(x)(v(0, t)− ϕ(0, t)) (11)

∂tϕ(x, t) = µ(x)∂xϕ(x, t) +

n∑
j=1

θj(x)ηj(x, t)

− kn+1(x)(v(0, t)− ϕ(0, t)) (12)

with boundary conditions

ηi(0, t) = 0, (13)

ϕ(1, t) =

n∑
j=1

(ρj − ρ̄j)uj(1, t)

+

n∑
j=1

ρ̄jηj(1, t) + U(t) (14)

These filters model how the control input U(t) and measured
ui(1, t) in (4), affect the system (1)–(4). The injection gains
ki(x), i = 1 . . . n+ 1 are yet to be designed.

Next, for i, j = 1 . . . n, we define the filters

∂tpij(x, t) = −λi(x)∂xpij(x, t) +

n∑
k=1

σik(x)pkj(x, t)

+ ωi(x)rj(x, t) + ki(x)rj(0, t) (15)

∂tri(x, t) = µ(x)∂xri(x, t) +

n∑
k=1

θk(x)pki(x, t)

+ kn+1(x)ri(0, t) (16)

∂twij(x, t) = −λi(x)∂xwij(x, t) +

n∑
k=1

σik(x)wkj(x, t)

+ ωi(x)zj(x, t) + ki(x)zj(0, t) (17)

∂tzi(x, t) = µ(x)∂xzi(x, t) +

n∑
k=1

θk(x)wki(x, t)

+ kn+1(x)zi(0, t). (18)

with boundary conditions

pij(0, t) =

{
v(0, t) if i = j

0 if i ̸= j
(19)

ri(1, t) =

n∑
k=1

ρ̄kpki(1, t), (20)

wij(0, t) =

{
1 if i = j

0 if i ̸= j
(21)

zi(1, t) =

n∑
k=1

ρ̄kwki(1, t). (22)
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Fig. 1. System structure of ui (blue) and v (red) with internal couplings (orange), boundary conditions at x = 0 (green) and boundary conditions at x = 1
(black). The idea for this figure is taken from [?].

The filters (15)–(16), (19)–(20) and (17)–(18), (21)–(22)
model how the boundary coefficients qi and additive dis-
turbances di, i = 1 . . . n in (3) affect the system (1)–(4),
respectively. The filters (11)–(22) are essentially copies of
the system dynamics (1)–(2), but with injection terms added.
Using the filters, we define the following relations between
the filters and the system states. For i = 1 . . . n,

ui(x, t) = ūi(x, t) + ei(x, t) (23)
v(x, t) = v̄(x, t) + ϵ(x, t) (24)

where

ūi(x, t) = ηi(x, t) +

n∑
j=1

qjpij(x, t) +

n∑
j=1

djwij(x, t) (25)

v̄(x, t) = ϕ(x, t) +

n∑
j=1

qjrj(x, t) +

n∑
j=1

djzj(x, t) (26)

for some error terms ei(x, t), i = 1 . . . n and ϵ(x, t). A
schematic showing the structure of how the filters relate to
the system states is given in Figure 2.

IV. ERROR DYNAMICS ANALYSIS

In this section, we will show that the error terms in (23)–(24)
converge to zero exponentially if the injection terms ki(x),
i = 1 . . . n are chosen correctly. The error dynamics can be
derived from the static relations (23)–(24) to be

∂tei(x, t) = −λi(x)∂xei(x, t) +

n∑
j=1

σij(x)ej(x, t)

+ ωi(x)ϵ(x, t) + ki(x)ϵ(0, t) (27)

∂tϵ(x, t) = µ(x)∂xϵ(x, t) +

n∑
j=1

θj(x)ej(x, t)

+ kn+1(x)ϵ(0, t) (28)

with boundary conditions

ei(0, t) = 0 (29)

ϵ(1, t) =

n∑
j=1

ρ̄jej(1, t). (30)

and initial data

ei0, ϵ0 ∈ L2([0, 1]), i = 1 . . . n. (31)

A. Backstepping transformation

The error system dynamics (27)–(28) has the same form as
the observer error dynamics in [?], where the authors used the
following backstepping transformation

ei(x, t) = αi(x, t) +

∫ x

0

mi(x, ξ)β(ξ, t)dξ (32)

ϵ(x, t) = β(x, t) +

∫ x

0

mn+1(x, ξ)β(ξ, t)dξ (33)

with
ki(x) = −µ(0)mi(x, 0), i = 1 . . . n+ 1, (34)

to achieve to following target error system

∂tαi(x, t) = −λi(x)∂xαi(x, t) +

n∑
j=1

σi,j(x)αj(x, t)

+

n∑
j=1

∫ x

0

gi,j(x, ξ)αj(ξ, t)dξ (35)

∂tβ(x, t) = µ(x)∂xβ(x, t) +

n∑
j=1

θj(x)αj(x, t)

+

n∑
j=1

∫ x

0

hj(x, ξ)αj(ξ, t)dξ (36)

with boundary conditions

αi(0, t) = 0, for i = 1, . . . , n (37)

β(1, t) =

n∑
j=1

ρ̄jαj(1, t) (38)
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Fig. 2. Structure of the filter system, and their connection to the system states
ui(x, t) (blue) and v(x, t) (red). Only one of the states ui(x, t) is displayed,
and arguments are omitted to ease readability.

where

hi(x, ξ) = −θi(ξ)mn+1(x, ξ)

−
∫ x

ξ

mn+1(x, s)hi(s, ξ)ds (39)

gi,j(x, ξ) = −θj(ξ)mi(x, ξ)−
∫ x

ξ

mi(x, s)hj(s, ξ)ds. (40)

With prime denoting the derivative, the kernels in the back-
stepping transformation (32)–(33) satisfy the following PDEs

λi(x)∂xmi − µ(ξ)∂ξmi = µ′(ξ)mi +

n∑
j=1

σi,j(x)mj

+ ωi(x)mn+1, i = 1 . . . n (41)
µ(x)∂xmn+1 + µ(ξ)∂ξmn+1 = −µ′(ξ)mn+1

+

n∑
i=1

θi(x)mi (42)

with boundary conditions

mi(x, x) =
ωi(x)

λi(x) + µ(x)
, i = 1 . . . n (43)

mn+1(1, ξ) =

n∑
j=1

ρ̄jmj(1, ξ) (44)

defined over the triangular domain T = {(x, ξ) | 0 ≤ ξ ≤ x ≤
1}. It was shown in [?] that the transformation (32)–(33) is
invertible, and that the kernel equation (41)–(44) has a unique
solution. Since the transformation is invertible, the stability
properties of the target and original system are equivalent.

B. Stability

Theorem 1: Under the assumptions

λi, µ ∈ C1([0, 1],R+), σi,j , ωi, θi ∈ C([0, 1]), (45)

u0
i , v

0, η0i , ϕ
0, p0ij , r

0
i , w

0
ij , z

0
i ∈ L2([0, 1]) (46)

for all i, j = 1 . . . n, the origin (e1, e2, . . . , ϵ) = 0 of the
system (27)–(28) together with the boundary conditions (29)–
(30) and initial data (31) is exponentially stable in the L2-
sense.
Proof.

We begin by putting the target system (35)–(38) on matrix
form as follows

∂tα(x, t) = −Λ(x)∂xα(x, t) + Σ(x)α(x, t)

+

∫ x

0

G(x, ξ)α(ξ, t)dξ (47)

∂tβ(x, t) = µ(x)∂xβ(x, t) + θT (x)α(x, t)

+

∫ x

0

hT (x, ξ)α(ξ, t)dξ (48)

with boundary conditions

α(0, t) = 0 (49)

β(1, t) = ρ̄Tα(1, t) (50)

where
α(x, t) =

[
α1(x, t) . . . αn(x, t)

]T
(51)

Λ(x) = diag{λ1(x), . . . , λn(x)} (52)

Σ(x) =

σ1,1(x) . . . σ1,n(x)
...

. . .
...

σn,1(x) . . . σn,n(x)

 (53)

G(x, ξ) =

g1,1(x, ξ) . . . g1,n(x, ξ)
...

. . .
...

gn,1(x, ξ) . . . gn,n(x, ξ)

 (54)

θ(x) =
[
θ1(x) . . . θn(x)

]T
(55)

h(x, ξ) =
[
h1(x, ξ) . . . hn(x, ξ)

]T
(56)

ρ̄ =
[
ρ̄1 . . . ρ̄n

]T
. (57)
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Form the Lyapunov function

V1 = a1

∫ 1

0

e−δxαT (x, t)Λ−1(x)α(x, t)dx

+

∫ 1

0

eδxµ−1(x)β2(x, t)dx (58)

where a1 and δ are constants to be decided. For the time
derivative of (58), one obtains (see Appendix A1 for details)

V̇1 ≤ −(a1e
−δ − nM2)αT (1, t)α(1, t)− β2(0, t)

−
∫ 1

0

γ1(x)α
T (x, t)α(x, t)dx−

∫ 1

0

γ2(x)β
2(x, t)dx

(59)

where

γ1(x) := a1e
−δx

(
δ − (2 + x)

Mn

λ
− Mn

λδ

)
+ a1

Mn

λδ
e−δ − M

µ
eδx − M

µδ
eδ +

M

µδ
eδx (60)

and

γ2(x) := δeδx − Mn

µ
eδx − Mn

µ
xeδx (61)

and M , λ, µ are such that, for all i, j = 1 . . . n

||σi,j ||∞, ||gi,j ||∞, ||θi||∞, ||hi||∞, ||ρi||∞ < M, (62)
λi(x) > λ, µ(x) > µ, ∀x ∈ [0, 1]. (63)

Choosing (see Appendix A2 for details)

δ > max

{
4
Mn

λ
, 2

Mn

µ
, 1

}
(64)

and

a1 > max


(
M

µ
eδ +

M

µδ
eδ − M

µδ

)
eδ

δ − 3
Mn

λ
− Mn

λδ

, nM2eδ

 (65)

concludes the proof.

V. UPDATE LAW

From the static form (23)–(24) with error terms converging
exponentially to zero, one can use standard gradient and least
squares update laws to estimate the unknown parameters qi
and di, i = 1 . . . n. Suppose 0 ≤ m ≤ n of the ui(1, t)’s are
available for measurement and let k1 < k2 < · · · < km denote
their indexes. That is, ukj for j = 1, . . . ,m are measured.
Define the following vector of errors

e(t) = a(t)−R(t)ν (66)

where

R(t) :=

[
P (t) W (t)
rT (t) zT (t)

]
(67)

P (t) =


pk1,1(1, t) . . . pk1,n(1, t)
pk2,1(1, t) . . . pk2,n(1, t)

...
. . .

...
pkm,1(1, t) . . . pkm,n(1, t)

 (68)

W (t) =


wk1,1(1, t) . . . wk1,n(1, t)
wk2,1(1, t) . . . wk2,n(1, t)

...
. . .

...
wkm,1(1, t) . . . wkm,n(1, t)

 (69)

r(t) =
[
r1(0, t) . . . rn(0, t)

]T
(70)

z(t) =
[
z1(0, t) . . . zn(0, t)

]T
(71)

a(t) :=


uk1

(1, t)− ηk1
(1, t)

uk2
(1, t)− ηk2

(1, t)
...

ukm
(1, t)− ηkm

(1, t)
v(0, t)− ϕ(0, t)

 (72)

e(t) :=
[
ek1

(1, t) ek2
(1, t) . . . ekm

(1, t) ϵ(0, t)
]T
(73)

and where

ν :=
[
q1 . . . qn d1 . . . dn

]T
(74)

is the vector of unknown parameters. Note that all the elements
of a(t) and R(t) are either generated using filters or measured.

Theorem 2: Consider the system (1)–(4) with filters (11)–
(20) and injection gains given by (34) and (41)–(44). Then the
following normalized update law

˙̂ν = Γ
RT (t)(a(t)−R(t)ν̂)

1 + ||RT (t)R(t)||2
(75)

for some gain matrix Γ > 0 ensures that ν̃ = ν̂ − ν ∈ L∞.
Moreover, if R(t) and Ṙ(t) are bounded and RT (t) is persis-
tently exciting (PE), the system parameters converge to their
true values exponentially.

Remark 3: A stable plant will ensure that R(t) and Ṙ(t)
are bounded.
Proof of theorem 2. We construct a ”prediction error” as
follows

ê(t) = a(t)−R(t)ν̂. (76)

Now consider the Lyapunov function candidate

V = a2V1 +
1

2
ν̃TΓ−1ν̃ (77)

where ν̃ := ν̂ − ν and a2 is yet to be decided. Then

V̇ = a2V̇1 + ν̃TΓ−1 ˙̃ν

≤ −a2a1e
−δαT (1, t)α(1, t)− a2β

2(0, t)

− a2k1

∫ 1

0

αT (x, t)α(x, t)dx− a2k2

∫ 1

0

β2(x, t)dx

+ ν̃T
RT (t)ê(t)

1 + ||RT (t)R(t)||2
(78)

where k1 and k2 are lower bounds for γ1(x) and γ2(x),
respectively. Noticing that ê(t) = a(t)−R(t)ν̂ = e(t)−R(t)ν̃,
we find

V̇ ≤ −a2(a1e
−δ − nM2)αT (1, t)α(1, t)− a2β

2(0, t)

− a2k1

∫ 1

0

αT (x, t)α(x, t)dx− a2k2

∫ 1

0

β2(x, t)dx
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+
ν̃TRT (t)e(t)

1 + ||RT (t)R(t)||2
− |R(t)ν̃|2

1 + ||RT (t)R(t)||2

≤ −a2(a1e
−δ − nM2)αT (1, t)α(1, t)− a2β

2(0, t)

− a2k1

∫ 1

0

αT (x, t)α(x, t)dx− a2k2

∫ 1

0

β2(x, t)dx

− 1

2

|R(t)ν̃|2

1 + ||RT (t)R(t)||2

+
1

2
eT (t)e(t). (79)

We investigate the latter term. We have that

e2i (1, t) =

(
αi(1, t) +

∫ 1

0

mi(1, ξ)β(ξ, t)dξ

)2

≤ 2α2
i (1, t) + 2

(∫ 1

0

mi(1, ξ)β(ξ, t)dξ

)2

≤ 2α2
i (1, t) + 2M2

(∫ 1

0

β(ξ, t)dξ

)2

≤ 2α2
i (1, t) + 2M2

∫ 1

0

β2(ξ, t)dξ (80)

where M bounds the kernel mi(x, ξ). Furthermore

ϵ2(0, t) = β2(0, t), (81)

thus

V̇ ≤ −(a2(a1e
−δ − nM2)− 1)αT (1, t)α(1, t)

−
(
a2 −

1

2

)
β2(0, t)

− a2k1

∫ 1

0

αT (x, t)α(x, t)dx

−
∫ 1

0

(a2k2 − nM2)β2(x, t)dx

− 1

2

|R(t)ν̃|2

1 + ||RT (t)R(t)||2
(82)

Choose

a2 > max

{
1

a1e−δ − nM2
,
nM2

k2
,
1

2

}
(83)

and let δ and a1 satisfy (64) and (65), respectively. Therefore,
V is bounded which in turns implies that ν̃ is bounded.

Since, from Theorem 1, we have that ei and ϵ will go
to zero exponentially and independently of the update law
of Theorem 2, the static form of the measurements in (66)
will asymptotically reach the form a(t) = R(t)ν. The latter
part of the theorem then immediately follows from part iii) of
Theorem 4.3.2 in [?].

VI. CONVERGENCE ANALYSIS

Having established boundedness of the update law, we will
elaborate on some of the requirements for convergence of
the estimated parameters. We first claim that if nd ≤ n
of parameters di are unknown, then a necessary condition
for RT (t) to be PE is that a number m ≥ nd − 1 of the
ui(1, t)’s are measured, and the unknown parameters must be
identifiable through the set of measurements.

This claim can be seen from the fact that the filters (17)–
(18) constitute an independent subsystem that is, through (21),
driven by constants. Eventually, the filters will reach steady
state, and the regressors for the additive terms di in (67) will
become constants. A total of nd measurements is therefore
required to determine all the additive terms di. As v(0, t) must
be measured, a total of m = nd− 1 of the parameters ui(1, t)
must also be measured. Lack of identifiability for a parameter
will yield a corresponding regressor that is constantly zero.

Following this observation, if all but one di are known,
only the single measurement v(0, t) is, in theory, required to
estimate all the parameters qi, provided all the requirements
of Theorem 2 are met.

VII. SIMULATIONS

The system with the adaptive observer were implemented
in Matlab for n = 2. The kernel equation (41)–(44) was
solved using FreeFEM++ [?]. Both a stable and an unstable
plant were implemented. The stable plant is also simulated for
various number of measured ui(1, t).

A. Stable plant, u1(1, t) and u2(1, t) are measured
We here assume that both u1(1, t) and u2(1, t) are available

for measurement. The system transport speeds were here set
to 1

λ1 = λ2 = µ = 1 (84)

with the in-domain parameters set toσ1,1 σ1,2 ω1

σ2,1 σ2,2 ω2

θ1 θ2 0

 =

0 0.2 0.4
0 0 0.2
0 0.2 0

 (85)

and the boundary parameters set to[
q1 d1 ρ1
q2 d2 ρ2

]
=

[
1 0.5 0
1.2 −0.3 −0.8

]
. (86)

The plant’s and filters initial values were all set to zero. The
following input2

U(t) = sin(t) + sin(
√
2t) + sin(

√
3t) (87)

turned out to make the regressor R(t) satisfy the PE require-
ments. The adaptation gain was set to

Γ = 20 · I4×4. (88)

The simulation results are found in Figure 3. The estimated
parameters reach their true values after approximately 10
seconds of simulation, while the state estimation errors are
seen to converge to zero in approximately the same amount
of time. The states are also observed to be bounded, which, as
stated in Remark 3, ensures that R(t) and Ṙ(t) are bounded
as required by Theorem 2.

B. Stable plant, u2 unmeasured
We now assume only u1(1, t) is available for measurement.

All the system parameters are as in the previous section. The
estimated parameters are shown in Figure 4. As seen from

1The plant parameters are the same that were used in the simulation
example in [?], with the in-domain parameters downscaled to ensure the plant
is stable.

2The even simpler input U(t) = sin(t) is also sufficient.
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Fig. 3. Estimated states and parameters, m = 2
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Fig. 4. Estimated parameters, m = 1

the figure, all four parameters still converge although the rate
of convergence is somewhat slower than when both u1(1, t)
and u2(1, t) are available for measurement. This observation
is most obvious from the estimate of d2, and is a result of the
number of measurements being reduced by one.

C. Stable plant, u1 unmeasured

Finally, we assume only u2(1, t) is available for measure-
ment. All other parameters are as in the previous two sections.
The estimated parameters are shown in Figure 5. Although
the estimates for q2 and d2 converge within approximately 8
seconds, the estimates for q1 and d1 doesn’t even move. This
follows from the lack of observability of these to parameters
through u2(1, t) and v(0, t).

D. Unstable plant

The same transport speeds as in the previous cases were
used, but the in-domain system parameters were set toσ1,1 σ1,2 ω1

σ2,1 σ2,2 ω2

θ1 θ2 0

 =

0 2 4
0 0 2
0 2 0

 (89)

and the boundary parameters were set to[
q1 d1 ρ1
q2 d2 ρ2

]
=

[
1 0 0
1.2 0 −0.8

]
. (90)

All other parameters and all initial conditions are the same
as in the previous simulation cases. These system parameters
yield the same system that was used for demonstrating the
theory derived in [?], and is open-loop unstable. This is clearly

seen from the states displayed in Figure 6. Also observed from
the figure, is that the estimates of the multiplicative constants
q1 and q2 converge. However, the estimates for the additive
constants d1 and d2 stagnate off their true values. Further
investigation reveals that the estimates for d1 and d2 stagnates
due to the normalization term in (75) ending up very large in
magnitude leaving the time derivatives in (75) essentially zero.
This follows from the fact that the plant is unstable, which
is evident from the system states. An interesting observation
from Figure 6, however, is that although the state prediction
errors are non-zero, their relative errors compared to the
magnitudes of the system states are very small. The relative
error for ê1 for instance, is in the order of 10−11.

VIII. CONCLUSION

We have developed an adaptive observer for coupled, hy-
perbolic first-order PDEs with unknown boundary parameters
using swapping design. The observer uses a set of filters to
convert the dynamic equations into static ones. A straight
forward gradient or least squares adaptive law can then be
used to estimate the unknown parameters. Proof of bounded-
ness are given, and sufficient conditions ensuring exponential
parameter convergence is given. Simulations show parameter
convergence for the given conditions.

Areas that could be subject to further work include deriving
more explicit conditions on v(0, t) or U(t) to ensure PE and
parameter convergence. The observer can also be combined
with a controller to establish closed loop adaptive control.
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Fig. 5. Estimated parameters, m = 0
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APPENDIX

A. Details regarding the proof of Theorem 1

1) Details regarding Equation (59): Differentiating (58)
with respect to time and inserting the dynamics of the target
system (35)–(36), we find

V̇1 = −2

∫ 1

0

a1e
−δxαT (x, t)∂xα(x, t)dx

+ 2

∫ 1

0

a1e
−δxαT (x, t)Λ−1(x)Σ(x)α(x, t)dx

+ 2

∫ 1

0

a1e
−δxαT (x, t)Λ−1(x)

∫ x

0

G(x, ξ)α(ξ, t)dξdx

+ 2

∫ 1

0

eδxβ(x, t)∂xβ(x, t)dx

+ 2

∫ 1

0

eδxµ−1(x)β(x, t)θT (x)α(x, t)dx

+ 2

∫ 1

0

eδxµ−1(x)β(x, t)

∫ x

0

hT (x, ξ)α(ξ, t)dξdx (91)

We find the following bounds on the different terms.
a) Part 1:

− 2a1

∫ 1

0

e−δxαT (x, t)∂xα(x, t)dx

= −a1e
−δαT (1, t)α(1, t)

− a1δ

∫ 1

0

e−δxαT (x, t)α(x, t)dx (92)

b) Part 2:

2a1

∫ 1

0

e−δxαT (x, t)Λ−1(x)Σ(x)α(x, t)dx

≤ 2a1
Mn

λ̄

∫ 1

0

e−δxαT (x, t)α(x, t)dx (93)

c) Part 3:

2a1

∫ 1

0

e−δxαT (x, t)Λ−1(x)

∫ x

0

G(x, ξ)α(ξ, t)dξdx

≤ a1
Mn

λ̄

∫ 1

0

xe−δxαT (x, t)α(x, t)dx

+ a1
Mn

λ̄δ

∫ 1

0

(e−δx − e−δ)αT (x, t)α(x, t)dx (94)

d) Part 4:

2

∫ 1

0

eδxβ(x, t)∂xβ(x, t)dx

≤ −β2(0, t) +M2nα(1, t)Tα(1, t)

− δ

∫ 1

0

eδxβ2(x, t)dx (95)

e) Part 5:

2

∫ 1

0

eδxµ−1(x)β(x, t)θT (x)α(x, t)dx

≤ Mn

µ̄

∫ 1

0

eδxβ2(x, t)dx

+
M

µ̄

∫ 1

0

eδxαT (x, t)α(x, t)dx (96)
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Fig. 6. Estimated states and parameters
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f) Part 6:

2

∫ 1

0

eδxµ−1(x)β(x, t)

∫ x

0

hT (x, ξ)α(ξ, t)dξdx

≤ Mn

µ̄

∫ 1

0

xeδxβ2(x, t)dx

+
M

µ̄δ

∫ 1

0

(eδ − eδx)αT (x, t)α(x, t)dx (97)

Lumping the different terms together, we obtain (59).
2) Details regarding the bounds on δ and a1: We must

choose a1 > 0 and δ > 0 so that the term in the first
parenthesis in (59) and both γ1(x) and γ2(x) given in (60)
and (61), respectively, are positive for all x ∈ [0, 1]. Firstly,
we’ll have to choose δ so that the term in the large parenthesis
in (60) is positive,

δ > (2 + x)
Mn

λ
+

Mn

λδ
. (98)

By letting δ > 1, and remembering that x ∈ [0, 1], we obtain

δ > (2 + 1)
Mn

λ
+

Mn

λ
= 4

Mn

λ
. (99)

From (61), we require

δ >
Mn

µ
+

Mn

µ
x (100)

which yields

δ > 2
Mn

µ
. (101)

Hence, we find the requirement (64) on δ. We also need to
choose a1 > 0 so that the term in the first parenthesis in (59)
is positive, and so that (60) is positive. From the term in (59),
we obtain the requirement

a1 > nM2eδ (102)

while from (60), we can omit the positive term a1
Mn
λδ e−δ in

the analysis, and choose a1 so that

a1e
−δx

(
δ − (2 + x)

Mn

λ
− Mn

λδ

)
− M

µ
eδx − M

µδ
eδ +

M

µδ
eδx (103)

is positive. Since, from the choice of δ in (64), the term in the
parenthesis is positive we can divide by it, yielding

a1 >

(
M

µ
eδ +

M

µδ
eδ − M

µδ

)
eδ

δ − 3
Mn

λ
− Mn

λδ

. (104)

Thus, we find the requirement (65) on a1, which together
with (64) will ensure that V̇1 in (59) is negative semi-definite,
concluding the proof.
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