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1Institute for Nonlinear Mechanics,
University of Stuttgart, Stuttgart, Germany
2Department of Mathematics, National
Technical University of Athens, Athens,
Greece
3Department of Mechanical and
Aerospace Engineering, University of
California, San Diego, California, USA

Correspondence
Mamadou Diagne, Department of
Mechanical and Aerospace Engineering,
University of California, San Diego,
La Jolla, CA 92093-0411, USA.
Email: mdiagne@ucsd.edu

Funding information
NSF, Grant/Award Number:
ECCS-2151525; AFOSR, Grant/Award
Number: FA9550-22-1-0265; NSF
CAREER, Grant/Award Numbers:
CMMI-2302030, CMMI-2222250

Abstract
For population systems modeled by age-structured hyperbolic partial differen-
tial equations (PDEs), we redesign the existing feedback laws, designed under
the assumption that the dilution input is directly actuated, to the more realis-
tic case where dilution is governed by actuation dynamics (modeled simply by
an integrator). In addition to the standard constraint that the population den-
sity must remain positive, the dilution dynamics introduce constraints of not
only positivity of dilution, but possibly of given positive lower and upper bounds
on dilution. We present several designs, of varying complexity, and with vari-
ous measurement requirements, which not only ensure global asymptotic (and
local exponential) stabilization of a desired positive population density profile
from all positive initial conditions, but do so without violating the constraints
on the dilution state. To develop the results, we exploit the relation between
first-order hyperbolic PDEs and an equivalent representation in which a scalar
input-driven mode is decoupled from input-free infinite-dimensional internal
dynamics represented by an integral delay system.
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1 INTRODUCTION

1.1 Motivation: Chemostat as a benchmark for nonlinear control and for control
in epidemiology

Many industrial biotechnology processes can be described by a nonlinear PDE (partial differential equation) of population
dynamics that are structured around age. Reflecting the maturation of enzymes, microbial organisms, animal or plant cells
and tissues,1–3 these models of biological and biochemical systems are often exploited to favor the desired functionalities
and achieve cost-effective bioreactors’ production rate.4–6 The word “chemostat” denotes a biological process in which is
fed a nutrient at a certain rate and from which a bioproduct-nutrient mix is being extracted/removed at the same rate.4
This rate is referred to as the “dilution rate.” The relevance of chemostats in control engineering extends beyond their own
application in biotechnology (such as the manufacturing of pharmaceuticals). First, a chemostat is a nonlinear control
problem—even when the limiting substrate(s) nonlinear dynamics are neglected—due to the fact that its dynamic model

Abbreviations: BC, boundary condition; IDE, integral delay equation; ODE, ordinary differential equation; OE, output equation; PDE, partial
differential equation.
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2 HAACKER et al.

contains a product of the population density and the dilution rate. Second, the relevance of the chemostat is also in the fact
that it is an example of a “positive system,” namely, a control system whose state is subject to an inequality constraint.7,8

Third, and perhaps most important at present, chemostat is a special case of more complex population dynamics
such as those that arise in epidemiology.9,10 In fact, Reference 11 makes the connection between chemostat and SIR
models explicit. Before one takes on control design of SIR-type (susceptible-infected-recovered) models in epidemiology,
in which control is being applied to more than one population (e.g., to the susceptible and the infected populations), it
is necessary to understand how to control single-population chemostats. Just as there is a parallel between the biomass
in a chemostat and the infected population in epidemiology, as well as between the substrate in a chemostat and the
susceptible population in epidemiology,9,12 there is likewise a parallel between the treatment/therapy being administered
as an input in epidemiology and the dilution input of a chemostat.

Hence, the study of control of an age-structured chemostat that we undertake here is an important first step towards
designing controllers for age-structured models in epidemiology.

1.2 Age-structured population dynamics

Age-structured chemostat models are described by a particular first order hyperbolic partial differential equation (PDE)
with a non-local boundary condition: the McKendrick-von Foerster equation (see References 13–18 and the references
therein). Age-structured models are extensions of the chemostat models described by ordinary differential equations
(ODEs; see Reference 19). A particular and deep mathematical tool has been developed for the study of age-structured
models: the ergodic theorem, also known as the asymptotic behavior (see References 18,20,21 for similar results on
asymptotic similarity and Reference 4 for the proof of the ergodic theorem by means of Lyapunov arguments).

Control studies for age-structured models are rare. Optimal control problems have been studied (see References
16,22,23 and the references therein). On the other hand, feedback control of infinite-dimensional population dynam-
ics was introduced in Reference 4 and further considered in References 6,24. More specifically, the use of the ergodic
theorem and the corresponding study of linear integral delay equations in Reference 4 led to a special nonlinear
infinite-dimensional change of variables, from the age-structured population density (a population density that is a
function of the continuum age) into

1. a scalar variable that represents the controllable mode of the bilinear non-local hyperbolic PDE system which is directly
actuated by the dilution rate input, and

2. an infinite-dimensional uncontrollable but exponentially stable dynamical system described by linear integral delay
equations,

and has subsequently been the cornerstone of the control design and stability analysis of age-structured population
dynamics.

The control studies in References 4,6,24 used the dilution rate as the control input as in many other control studies of
chemostat models described by ODEs (see References 25–29). Actuation by dilution rate is both physical and plausible and
it amounts to harvesting the population. In simplistic terms, a steady level of harvesting is needed to maintain the pop-
ulation at a sustained level (equilibrium) and, when the population exceeds such an equilibrium, it is over-harvested by
(over) dilution, whereas when the population drops below such an equilibrium, it is under-harvested by (under) dilution.
How this over- and under-harvesting is to be done exactly is highly non-trivial because the population is age-structured,
meaning that its state is functional/infinite-dimensional, due to which one cannot really speak of overpopulation and
under population in a bulk sense. One has, instead, to take into account that the population can vary from the equilib-
rium in infinitely many ways (overpopulated old with underpopulated young, vice-versa, and so on). This infinite variety
in the state profiles, in addition to the infinite number of states (age-specific densities), along with the nonlinearity of the
problem, is one of the theoretical attractions to this control design problem.

1.3 Chemostat with dynamic actuation of dilution

While dilution is a plausible form of actuation, it is not possible to actuate it instantaneously. As with any other actua-
tion, it is governed by its own dynamics. In the case of dilution, it is affected by the dynamics of pipes and valves that
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HAACKER et al. 3

are used to run the nutrients into a chemostat and the population-nutrient mix out of the chemostat. In biochemical
engineering, the dilution rate is defined as the ratio of the inlet volumetric flow rate to the reactor volume. Since the
volume of the reactor is not necessarily constant, it follows that the dynamics of the dilution rate can play an important
role.

In this paper we design stabilizing feedback laws for the age-structured chemostat with dilution dynamics governed
by a single, scalar integrator. In the most advanced versions of our designs, we ensure that not only the population density,
but also the dilution rate, remains in a specific interval (and positive). Dilution rate being positive means that we are not
feeding population back into the chemostat but are only harvesting/removing population.

While the age-structured chemostat with a constant dilution rate is a PDE system with one eigenvalue at the origin
and all other eigenvalues in the left half plane, meaning that it is not open-loop unstable, and meaning that it can, at
worst, settle at an undesirable age profile for the population (provided the constant dilution is at a population-sustaining
level), the system with dilution dynamics modeled by an integrator has two eigenvalues at the origin, meaning that it is
open-loop unstable. This is one more way of noting the need for a more sophisticated control design for this PDE system
once the dynamics of the dilution actuation are introduced.

In this paper we tackle three design challenges:

1. we overcome the dynamics of the integrator modeling the dilution actuation,
2. we perform the design and the analysis using feedback of only a sensor of bulk population, which has an unknown

profile in sensing populations of different ages,
3. we ensure that the dilution rate that drives the population to the desired age-structured equilibrium from all initial

positive population density age profiles remains itself in a specific interval (and positive).

While in the initial work on control of the age-structured chemostat4 the state space of the systems was, so to speak,
the “positive orthant” of infinite dimension (the age-structured population density), in this work the state space increases
by one positive-valued state when the dilution dynamics are modeled by an integrator and becomes, so to speak, a
“positive orthant” of dimension∞+ 1. From a mathematical point of view, the paper deals with a global feedback stabi-
lization problem for a constrained nonlinear infinite-dimensional control system which is defined on a specific open set.
Finite-dimensional control systems defined on open sets were recently studied in Reference 30.

In comparing the results of the present paper with those in the landmark and incredibly complex Reference 4, by the
time the reader has made it through Sections 3,4,5, the reader will note that even a single integrator takes the demands in
control design and stability analysis to a whole next level in complexity. Furthermore, by the time the reader has completed
the study of Sections 6 and 7, s/he will note that maintaining the positivity of that extra scalar state, the dilution, requires
another two or three levels of complexity, in both control design and Lyapunov construction.

Organization: The structure of the paper is as follows. Section 2 introduces the mathematical model as well as the
stabilization problem. Sections 3 and 4 study the backstepping design of the problem with unrestricted dilution rate
assuming that the state is available, while Section 5 provides globally stabilizing output feedback laws. Sections 6 and 7
are devoted to the feedback stabilization problem of the more demanding case where the dilution rate is restricted to take
values in a specific interval.

Notation:

1. R+ denotes the interval [0,+∞).
2. Let U be an open subset of a metric space andΩ ⊆ Rm be a set. By C0(U; Ω), we denote the class of continuous mappings

on U, which take values in Ω. When U ⊆ Rn, by C1(U; Ω), we denote the class of continuously differentiable func-
tions on U, which take values inΩ. When U = [a, b) ⊆ R (or U = [a, b] ⊆ R) with a < b, C0([a, b); Ω) (or C0([a, b]; Ω))
denotes all functions f ∶ [a, b) → Ω (or f ∶ [a, b] → Ω), which are continuous on (a, b) and satisfy lim

s→a+
f (s) = f (a) (or

lim
s→a+

f (s) = f (a) and lim
s→b−

f (s) = f (b)). When U = [a, b) ⊆ R, C1([a, b); Ω) denotes all functions f ∶ [a, b) → Ω which are
continuously differentiable on (a, b) and satisfy lim

s→a+
(f (s)) = f (a) and lim

h→0+
h−1(f (a + h) − f (a)) = lim

s→a+
f ′(s).

3. ∞ is the class of all strictly increasing, unbounded functions a ∈ C0(R+;R+), with a(0) = 0 (see References 31,32).
4.  is the class of functions 𝛽 ∶ R+ ×R+ → R+ which satisfy the following: For each t ≥ 0, the mapping 𝛽(⋅, t) is of

class, and, for each s ≥ 0, the mapping 𝛽(s, ⋅) is nonincreasing with limt→∞ 𝛽(s, t) = 0 (see References 31,32).
5. For any subset S ⊆ R and for any A > 0, PC1([0,A]; S) denotes the class of all functions f ∈ C0([0,A]; S) for which there

exists a finite (or empty) set B ⊂ (0,A) such that: (i) the derivative f ′(a) exists at every a ∈ (0,A) ⧵ B and is a continuous
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4 HAACKER et al.

function on (0,A) ⧵ B, (ii) all meaningful right and left limits of f ′(a) when a tends to a point in B
⋃
{0,A} exist and

are finite.
6. Let a function f ∈ C0(R+ × [0,A]) be given, where A > 0 is a constant. We use the notation f [t] to denote the profile at

certain t ≥ 0, that is, (f [t])(a) = f (a, t) for all a ∈ [0,A].
7. Let a function x ∈ C0([−A,+∞);R) be given, where A > 0 is a constant. We use the notation xt ∈ C0([−A, 0];R) to

denote the “A−history” of x at certain t ≥ 0, that is, (xt)(−a) = x(t − a) for all a ∈ [0,A].
8. Let a function f ∈ C0(R+;R) be given. By D+f ∶ R+ → R,

t → (D+f )(t) = limsuph→0+
{

h−1(f (t + h) − f (t))
}

, we denote the upper Dini derivative.
9. Let A, B be logical statements. Their logical conjunction is denoted by A ∧ B.

2 POPULATION MODEL WITH ACTUATOR DYNAMICS

We consider the age distribution of the population of a microorganism in a bioreactor governed by the following equations

PDE:
𝜕f
𝜕t
(a, t) +

𝜕f
𝜕a
(a, t) = −(𝜇(a) + D(t))f (a, t) (1a)

ODE: ̇D(t) = u(t) (1b)

OE: y(t) =
∫

A

0
p(a)f (a, t)da (1c)

BC: f (0, t) =
∫

A

0
k(a)f (a, t)da (1d)

where a ∈ [0,A] is the age variable, A is the maximum reproductive age of the microorganism (a constant), t ∈ R+ is
time, f (a, t) > 0 denotes the distribution of the microbial mass in the reactor at age a ∈ [0,A] and time t, 𝜇 and k are
the mortality rate profile and birth rate profile, respectively, and p is the sensor kernel. The functions 𝜇 ∶ [0,A]→ R+
and k ∶ [0,A]→ R+ are assumed to be continuous in age a, and the function p ∶ [0,A]→ R+ continuously differentiable
in a with ∫ A

0 p(a)da > 0. The population of microorganisms grows at a rate regulated by the dilution rate D(t), which is
the control input of model (1a–d). Accounting for the inlet and outlet rate of the bioreactor, the PDE (1a) expresses the
microbial mass balance as a variation of the McKendrick-von Foerster equation.13–15,17,18 The internal boundary feedback
(1d), is the renewal condition, which expresses the reproduction of the microorganism as the current mass of the newborns
f (0, t). From a mathematical point of view, the boundary condition (1d) involves non-local terms. The measured output
defined in (1c) is a weighted average of the mass of the microorganism with an age-specific kernel p(a).

In chemostat reactors, the dilution rate is defined as the ratio of the inlet volumetric flow rate to the reactor volume.
Although, the reactor’s inlet flow and outlet volumetric flow rates are readily adjustable, the volume of the reactor is
not necessarily constant and its variations can be described by the dynamic actuation introduced as (1b). Indeed, the
population balance (1a–d) is a realistic extension of the model studied in Reference 4, which does not account for a
dynamic actuation and consequently assumes no possible variations of the reactor volume. Equation (1b) defines an
appropriate control input u(t) ∈ R that depends on the reactor volume, the reactor inlet and outlet volumetric flow rates
as well as on the time derivative of the reactor inlet volumetric flow rate.

It should also be noticed that model (1a–d) is derived by neglecting the dependence of the growth of the microorgan-
ism on the concentration of a limiting substrate. However, resource-based models that incorporate limiting substrates or
uptake of nutrients are more suitable to describe the dynamics of continuous microbial culture and might exhibit limit
cycles that are induced by the behavior of a limiting resource assuming constant dilution rates.12,33 Model (1a–d) presup-
poses that the growth or decay of a living population only depends on irreversible incidences of birth and death and is
therefore suitable to predict the evolution of macro-populations in demography, epidemiology9 and ecology.34

The state of model (1a–d) is (f [t],D(t)) ∈  ×R, where  is the function space defined by the following equation:

 =
{

f ∈ PC1([0,A]; (0,∞)) ∶ f (0) =
∫

A

0
k(a)f (a)da

}

. (2)

The results of this contribution encompass two different cases for the state space. For the first case, the state space is
defined as  ×R, allowing for the dilution rate D(t) to take arbitrary real values. However, as noted above, the dilution
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HAACKER et al. 5

rate is the ratio of the inlet volumetric flow rate to the reactor volume and consequently, it is physically meaningful to
restrict its set of admissible values to the interval I ⊆ R+, which is much more demanding as the state is constrained and
the state space defined as  × I.

Our main assumption for model (1a–d) is the existence of a constant D∗
> 0 such that

1 =
∫

A

0
k(a) exp

(

−D∗a −
∫

a

0
𝜇(s)ds

)

da, (3)

which is the analogue of the Lotka-Sharpe equation (see Reference 14) and equivalent to assuming population viability.
When the above assumption holds, model (1a–d) admits a family of equilibrium points (f ∗,D∗) (as the model without
actuator dynamics4), given by the following equation for arbitrary M > 0:

f ∗(a) = M exp
(

−D∗a −
∫

a

0
𝜇(s)ds

)

. (4)

The existence of a continuum of equilibria for model (1a–d) implies that none of the equilibrium points is asymptotically
stable. Therefore, if we want the bioreactor to operate on a specific equilibrium point, then we need to stabilize such an
equilibrium point by means of feedback control.

3 BACKSTEPPING DESIGN WITH UNRESTRICTED DILUTION

Our objective is to stabilize a desired steady-state (2) for a chosen M > 0 or equivalently, thanks to detectability, regulate
the output to an appropriate output setpoint

y∗ =
∫

A

0
p(a)f ∗(a) da > 0. (5)

Our design is build upon the control law proposed in Reference 4 for the stabilization of system (1a–d) without actuator
dynamics. We recall the output-feedback controller4

Dnom(t) = D∗ + k1 ln
y(t)
y∗
, k1 > 0 (6)

that stabilizes the equilibrium corresponding to y∗. To extend controller (6) to the case with actuator dynamics described
by system (1a–d), a backstepping approach is adopted. Defining the dilution rate error as follows

𝛿(t) ∶= D(t) − Dnom(t) (7)

and taking its time-derivative along the output y(t) given by (1c), with the help of integration by parts, the following ODE
is derived

̇
𝛿(t) = u(t) − k1

ẏ(t)
y(t)

(8)

= u(t) + k1D(t) + k1

y(t)

[

p(A)f (A, t) − p(0)f (0, t) −
∫

A

0
p̃(a)f (a, t)da

]

(9)

where

p̃(a) ∶= p′(a) − p(a)𝜇(a). (10)

At this point, we aim at designing a control law u(t) that achieves exponential convergence of the error 𝛿(t). Selecting
k2 > 0 such that

̇
𝛿(t) = −k2𝛿(t), (11)
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6 HAACKER et al.

the following controller is designed

u(t) = uc(t) + us(t) (12a)

uc(t) = −k1D(t) − k1

y(t)

[

p(A)f (A, t) − p(0)f (0, t) −
∫

A

0
p̃(a)f (a, t)da

]

(12b)

us(t) = −k2

(

D(t) − D∗ − k1 ln
y(t)
y∗

)

= −k2𝛿(t), (12c)

which is a superposition of canceling and stabilizing terms uc(t) and us(t). In the most general case, the controller (12a–c)
requires full measurement of the plant and the actuator states f (a, t) and D(t), respectively. Furthermore, the feasibil-
ity of controller (12a–c) depends on the knowledge of the parameters p, p′, 𝜇 and D∗. However, assuming constant
kernel p and mortality rate 𝜇, the canceling terms (12b) of backstepping controller (12a–c) reduces to the following
feedback law

uc(t) = −k1

{

D(t) +
p

y(t)
[
f (A, t) − f (0, t)

]
+ 𝜇

}

, (13)

which removes the burden of full-state measurement of the plant’s state.
To illustrate the stabilizing effect of the control law (12a–c), we first present simulation results before conducting a

stability analysis. Following Galerkin’s approach,35,36 the approximate population density, ̂f ∶ [0,A] ×R+ → R is defined
as follows

̂f (a, t) =
N∑

j=1
𝜙j(a)𝜉j(t) =∶ 𝜙(a)⊤𝜉(t) (14)

where𝜙j ∶ [0,A] → R are the trial functions satisfying the boundary condition (1d), chosen as in Reference 35 with N = 6,
and the temporal weights 𝜉j ∶ R+ → R are solutions to the initial value problem below

̇
𝜉(t) = (A

𝜙
− D(t)I)𝜉(t), t ≥ 0 (15a)

𝜉(0) = 𝜉0 (15b)

where A
𝜙
∈ RN×N is determined by the choice of trial functions𝜙j, and 𝜉0 ∈ RN is computed for a given initial population

density f0 ∈  of system (1a–d). A parameter set of the initial condition f0(a), birth rate k(a), death rate 𝜇(a), steady-state
input D∗ and maximum age of reproduction A used throughout this work is given below

f0(a) = 8 − 3a + 𝜙2(a), 𝜇(a) = 1
20 − 5a

, k(a) = a, p(a) = 1 + a2

10
, (16a)

D∗ ≈ 0.48, A = 2, 𝜙2(a) = sin(𝜔1a) exp(𝜎1a)
f ∗(a)
f ∗(0)

, 𝜔1 ≈ 3.82, 𝜎1 ≈ 0.91. (16b)

As shown in a representative simulation example in Figure 1, controller (12a–c) achieves convergence to the desired
output y∗ = ydes. However, the controller stabilizes the equilibrium profile without restricting the dilution rate D(t) to
physically meaningful values.

4 CLOSED-LOOP STABILITY FOR ALL POSITIVE INITIAL POPULATION
DENSITIES

For the stability proof, we invoke the transformation 𝛱 ∶  → R × C0([−A, 0]), f [t] → (𝜂(t), 𝜓t)mapping the age-profile
f [t] to its unstable “malthusian” and “asymptotic” mode

𝜂(t) = lnΠ(f [t]) (17a)

𝜓(t − a) =
f (a, t)

f ∗(a)Π(f [t])
− 1 (17b)
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HAACKER et al. 7

(A) (B)

(C) (D)

F I G U R E 1 Simulation results of system (1a–d) under the control law (12a–c) and with the parameters and the initial condition given
by (16a,b). The gains of the controller are chosen as k1 = 1 and k2 = 2. Convergence to the steady-state is achieved but with possibly negative
dilution rate D(t). (A) Input. (B) Output. (C) Dilution rate. (D) Population density.

where

Π(f ) =
∫

A
0 𝜋(a)f (a)da

∫
A

0 ak(a)f ∗(a)da
, 𝜋(a) =

∫

A

a
k(s) exp

(

∫

a

s
(𝜇(𝛼) + D∗)d𝛼

)

ds, a ∈ [0,A]. (18)

Equation (17b) has been proven to be a valid transformation,4 that is, the right hand side is indeed a function of (t − a).
Transforming the open-loop system (1a–d) in light of (17a,b), one receives

𝜂̇(t) = D∗ − D(t) (19a)
̇D(t) = u(t) (19b)

𝜓(t) =
∫

A

0

̃k(a)𝜓(t − a) da . (19c)

After transforming the closed-loop system consisting of (1a–d) and (12a–c), with the aid of the substitution of (12a–c)
into (9), we arrive at the dynamics

𝜂̇(t) = −k1𝜂(t) − 𝛿(t) − k1v(𝜓t) (20a)
̇
𝛿(t) = −k2𝛿(t) (20b)

𝜓(t) =
∫

A

0

̃k(a)𝜓(t − a) da (20c)
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8 HAACKER et al.

where (20c) is derived in Reference 4 and

̃k(a) ∶= k(a)
f ∗(a)
f ∗(0)

, g(a) ∶=
p(a)f ∗(a)

∫
A

0 p(a)f ∗(a)da
, v(𝜓t) ∶= ln

(

1 +
∫

A

0
g(a)𝜓(t − a)da

)

, (21)

and the equilibrium (𝜂, 𝛿, 𝜓) = 0 is to be proven asymptotically stable. This can be achieved using a member of the family
of Control Lyapunov Functionals provided in Reference 4. For this, we have to make a technical assumption:

Assumption 1 (Technical assumption on birth kernel). There exists a constant 𝜆 > 0 such that ∫ A
0 |̃k(a) −

r𝜆∫ A
a
̃k(s)ds|da < 1 where r−1 = ∫ A

0
̃k(a)ada. Let 𝜎 > 0 be a sufficiently small constant that satisfies the

inequality

∫

A

0

|
|
|
|
|

̃k(a) − r𝜆
∫

A

a

̃k(s)ds
|
|
|
|
|

exp(𝜎a)da < 1. (22)

Assumption 1 is a mild technical assumption, since it is satisfied by arbitrary mortality rate 𝜇 for every birth kernel k
that has a finite number of zeros on [0,A]. From a modeling standpoint, this means that individuals of ages zero to A are
reproducing at almost every age (see Reference 4).

Remark 1. The state 𝜓 of the internal dynamics (19c) is restricted (see Reference 4) to the set

 =
{

𝜓 ∈ C0([−A, 0]; (−1,∞)) ∶ P(𝜓) = 0 ∧ 𝜓(0) =
∫

A

0

̃k(a)𝜓(−a)da
}

(23)

where

P(𝜓) =
∫

A

0
𝜓(−a)

∫

A

a

̃k(s)dsda
(

∫

A

0
ãk(a)da

)−1

. (24)

Theorem 1 (Lyapunov stability of backstepping controller with unrestricted dilution). Let Assumption 1
hold. Then for every k1, k2 > 0, there exists a function 𝛼1 ∈ ∞ such that for every (f0,D0) ∈  × R the unique
solution (f [t],D(t)) ∈  ×R of the closed-loop system (1a–d) with (12a–c) and initial condition (f [0],D(0)) =
(f0,D0) exists for all t ≥ 0 and satisfies the following stability estimate for all t ≥ 0

R1(f [t],D(t)) ≤ exp
(
−𝜎1

2
t
)
𝛼1(R1(f0,D0)) (25)

where 𝜎1 = min
(

k1
2
, k2, 𝜎

)
> 0 and

R1(f ,D) ∶= max
a∈[0,A]

|
|
|
|
ln

f (a)
f ∗(a)

|
|
|
|
+ |D − D∗| (26)

for all (f ,D) ∈  × R.

Proof of Theorem 1. Lemma 4.1 of Reference 4 provides existence and uniqueness of the solution 𝜓t ∈  and
also

inf
t≥−A

𝜓(t) ≥ min
t∈[−A,0]

𝜓(t) > −1, ∀t ≥ 0. (27)

Notice that the second inequality is given by𝜓0 ∈  and is guaranteed for all physical initial conditions f0 ∈  .
Indeed, the initial condition of (20c) is given by

𝜓0(a) = 𝜓(−a) =
f0(a)

f ∗(a)Π(f0)
− 1 > −1, ∀a ∈ [0,A] (28)
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HAACKER et al. 9

where f0(a), f ∗(a) and Π(f0) are positive on the domain [0,A]. Since g(a) ≥ 0, ∫ A
0 g(a)da = 1 according to (21)

and inequality (27) holds, the map

v(𝜓t) ∶= ln
(

1 +
∫

A

0
g(a)𝜓(t − a)da

)

, for t ≥ 0 (29)

is continuous. Thus, the ODE subsystem of the closed-loop system (20a–c), namely, Equations (20a) and (20b)
locally admits a unique solution. Consider first the Lyapunov function

U1(𝜂, 𝛿) =
1
2
(
𝜂

2 + b1𝛿
2)
, ∀(𝜂, 𝛿) ∈ R

2 (30)

where b1 > 0 is a constant to be chosen. The time derivative of U1(𝜂(t), 𝛿(t)) along the solutions of (20a) and
(20b) can be upper bounded for all times t ≥ 0 for which the solution (𝜂(t), 𝛿(t)) exists as follows:

d
dt

U1(𝜂(t), 𝛿(t)) ≤ −
k1

4
𝜂(t)2 −

(

b1k2 −
1
k1

)

𝛿(t)2 + k1

2
v(𝜓t)2. (31)

Inequality (31) was derived using the inequalities −𝜂(t)𝛿(t) ≤ k1
4
𝜂(t)2 + 1

k1
𝛿(t)2 and −𝜂(t)v(𝜓) ≤ 1

2
v(𝜓)2 +

1
2
𝜂(t)2, which follow from the general Young inequality −𝜂𝛿 ≤ 1

2𝜀
𝜂

2 + 𝜀

2
𝛿, for 𝜀 = 2

k1
and 𝜀 = 1, respec-

tively. Next, as in the proof of Reference 4; [lemma 5.1], we use corollary 4.6 of the latter with C(𝜓t) =
(1 +min(0,mina∈[0,A] 𝜓(a)))−2 and b(s) = 1

2
s2 under Assumption 1 with sufficiently small parameter 𝜎 > 0 to

obtain that the functional

G(𝜓t) ∶=
maxa∈[0,A] |𝜓(t − a)| exp(−𝜎a)
1 +min(0,mina∈[0,A] 𝜓(t − a))

(32)

satisfies

D+G(𝜓t)2 ≤ −2𝜎G(𝜓t)2, ∀t ≥ 0 (33)

along solutions 𝜓t of the IDE (20c). Now, Reference 4; (A.43) also provides that

|v(𝜓t)| ≤ G(𝜓t) exp(𝜎A), ∀t ≥ 0. (34)

Given this fact, the bounds (31) and (33) and defining the Lyapunov functional

V1(𝜂, 𝛿, 𝜓) = U1(𝜂, 𝛿) +
1
2

b2G(𝜓)2,

= 1
2
(
𝜂

2 + b1𝛿
2 + b2G(𝜓)2

)
, ∀(𝜂, 𝛿, 𝜓) ∈ R ×R ×  (35)

with b1 = 2
k2k1

, b2 =
k1
𝜎

exp(2𝜎A), we derive the differential inequality

D+V1(𝜂(t), 𝛿(t), 𝜓t) ≤ −𝜎1V1(𝜂(t), 𝛿(t), 𝜓t), ∀t ≥ 0 (36)

where 𝜎1 = min
(

k1
2
, k2, 𝜎

)
> 0. Since estimate (36) implies that all solutions stay bounded for all times for

which they exist, we can conclude existence for all times. The differential inequality (36) in conjunction with
lemma 2.12 on pp. 77–78 in Reference 32, or simply using the comparison lemma in Reference 31, implies the
following estimate for all t ≥ 0:

V1(𝜂(t), 𝛿(t), 𝜓t) ≤ exp(−𝜎1t)V1(𝜂(0), 𝛿(0), 𝜓0). (37)

We next show that the estimate (25) holds. Recall from (7) that

𝛿(t) = ̃D(t) − k1(𝜂(t) + v(𝜓t)), t ≥ 0 (38)
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10 HAACKER et al.

where

̃D(t) = D(t) − D∗
, t ≥ 0. (39)

Define the positive definite quadratic function U2 ∶ R3 → R

U2(𝜂, ̃D, v) = 𝜂2 + b2

2
exp(−2𝜎A)v2 + b1

(
̃D − k1𝜂 − k1v

)2 (40)

where v is given by (29). Clearly, there exist constants c, c > 0 such that for all (𝜂, ̃D, v) ∈ R3 the following
inequalities hold:

c
(
𝜂

2 + ̃D2 + v2
)
≤ U2(𝜂, ̃D, v) ≤ c

(
𝜂

2 + ̃D2 + v2
)
. (41)

Consequently, (41) in conjunction with (35), (38), (41), (34) implies the following estimate:

V1(𝜂(t), 𝛿(t), 𝜓t) =
1
2

(

U2(𝜂(t), ̃D(t), v(𝜓t)) + b2G(𝜓t)2 −
b2

2
exp(−2𝜎A)v(𝜓t)2

)

(42)

≥
1
2

(

c
(
𝜂(t)2 + ̃D(t)2 + v(𝜓t)2

)
+ b2

2
G(𝜓t)2

)

, t ≥ 0. (43)

Using (43), we conclude that there exists an appropriate constant c̃ > 0 (independent of the solution), for
which the following estimate holds:

|𝜂(t)| + exp(𝜎A)G(𝜓t) + |
| ̃D(t)|| ≤ c̃

√
V1(𝜂(t), 𝛿(t), 𝜓t), t ≥ 0. (44)

From Reference 4; (5.24),

max
a∈[0,A]

|
|
|
|
ln

f [t](a)
f ∗(a)

|
|
|
|
≤ |𝜂(t)| + exp(𝜎A)G(𝜓t), t ≥ 0, (45)

that is, we arrive at the left-hand side of (25) after combining (44) and (45). To complete the proof of (25), we
need to show that there exists 𝛼̃ ∈ ∞ such that

V1(𝜂(0), 𝛿(0), 𝜓0) ≤ 𝛼̃
(

max
a∈[0,A]

|
|
|
|
ln

f0(a)
f ∗(a)

|
|
|
|
+ |
| ̃D(0)||

)

. (46)

We first note that Reference 4; (5.27) provides the existence of 𝛼̃1, 𝛼̃2 ∈ ∞

|𝜂0| ≤ 𝛼̃1

(

max
a∈[0,A]

|
|
|
|
ln

f0(a)
f ∗(a)

|
|
|
|

)

, G(𝜓0) ≤ 𝛼̃2

(

max
a∈[0,A]

|
|
|
|
ln

f0(a)
f ∗(a)

|
|
|
|

)

, (47)

and, using (41), we upper bound

V1(𝜂, 𝛿, 𝜓) ≤
1
2
(

c
(
𝜂

2 + ̃D(𝜂, 𝛿, 𝜓)2
)
+ ̃bG(𝜓)2

)
, (𝜂, 𝛿, 𝜓) ∈ R × R ×  (48)

for an appropriate constant ̃b > 0. The inequalities (47) and (48) allow us to conclude that there exists appro-
priate 𝛼̃ (independent of the solution) for which (46) holds. Combining (37), (44), (45) and (46), we obtain
estimate (25). ▪

Remark 2. Notice that the exponential convergence rate 𝜎1 of (36) is the minimum of three constants: the
nominal control gain k1, the backstepping convergence rate k2 and the convergence rate of the internal
dynamics 𝜎.
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HAACKER et al. 11

5 EASIER-TO-IMPLEMENT BACKSTEPPING CONTROLLER: OUTPUT
FEEDBACK WITHOUT SENSOR MODEL

Recall the canceling controller (12b)

uc(t) = k1(−D(t) + D∗ + v1(𝜓t)) (49)

where, with a substitution of (5) and (19c) into (12b), the term v1(𝜓t), defined in the lengthy fashion

v1(𝜓t) = −D∗ + 1
∫

A
0 p(a)f ∗(a)(1 + 𝜓(t − a))da

×
[

p(A)f ∗(A)(1 + 𝜓(t − A)) − p(0)f ∗(0)(1 + 𝜓(t)) −
∫

A

0
p̃(a)f ∗(a)(1 + 𝜓(t − a))da

]

, (50)

is a functional of the internal state variable𝜓 and, in spite of its seeming complexity, has the fortunate and crucial property
that it decays exponentially to v1(0) = 0. We relax the canceling control from exact cancellation to now only canceling the
steady-state value

uc(t) = k1(−D(t) + D∗) (51)

drastically reducing the measurement requirements. This approach achieves convergence y(t) → y∗ to the desired output,
which is illustrated by means of a representative simulation example in Figure 2.

Finding the closed-loop dynamics of (1a–d), (12a–c) and (51)

𝜂̇(t) = −k1𝜂(t) − 𝛿(t) − k1v(𝜓t) (52a)
̇
𝛿(t) = −k2𝛿(t) − k1v1(𝜓t) (52b)

𝜓(t) =
∫

A

0

̃k(a)𝜓(t − a) da, (52c)

we notice that, as a result of simplifying the controller, the dynamics of 𝛿 have become more complex, and as a
consequence the Lyapunov-like stability proof becomes harder to establish.

In our proof of stability, we make use of the following result, whose proof we state in the Appendix A.

Lemma 1. There exists a constant c1 > 0 such that every solution 𝜓t of the IDE (52c) satisfies the following
estimate for all t ≥ 0:

|v1(𝜓t)| ≤
√

c1
maxa∈[0,A] |𝜓(t − a)|

1 +mina∈[0,A] 𝜓(t − a)
. (53)

Theorem 2 (Lyapunov stability of static output feedback backstepping controller with unrestricted dilu-
tion). Let Assumption 1 hold. Then for every k1, k2 > 0, there exists a function 𝛼2 ∈ ∞ such that for every
(f0,D0) ∈  ×R the unique solution (f [t],D(t)) ∈  ×R of the closed-loop system (1a–d) with

u(t) = −(k1 + k2)(D(t) − D∗) + k1k2 ln
y(t)
y∗

(54)

and initial condition (f [0],D(0)) = (f0,D0) exists for all t ≥ 0 and satisfies the following stability estimate for all
t ≥ 0

R1(f [t],D(t)) ≤ exp
(
−𝜎1

2
t
)
𝛼2(R1(f0,D0)) (55)

where 𝜎1 = min
(

k1
2
,

k2
2
, 𝜎

)
> 0 and R1 is defined in (26).
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12 HAACKER et al.

(A) (B)

(C) (D)

F I G U R E 2 Simulation results of system (1a–d) with parameters and initial condition (16a,b) and controller (12a–c) but relaxed
canceling terms (51) with gains k1 = 1, k2 = 2. Convergence to the desired output y∗ = ydes is achieved. The controller employs a non-physical
negative dilution D(t) in the transient to achieve stabilization globally (for all positive population densities). A more complicated
backstepping re-design that employs global stabilization using only positive dilution is presented in Section 6. (A) Input. (B) Output. (C)
Dilution rate. (D) Population density.

Proof of Theorem 2. Again, like in (28), we know that the map t → v(𝜓t) is well-defined for all t ≥ 0 and is
continuous. Thus, the closed-loop system (52a–c) locally admits a solution. We first consider the function

U1(𝜂, 𝛿) =
1
2
(𝜂2 + b1𝛿

2), (𝜂, 𝛿) ∈ R
2
, (56)

where b1 > 0 is a constant to be chosen. The time derivative of U1(𝜂(t), 𝛿(t)) along solutions of (52a) and (52b)
can be upper bounded for all times t ≥ 0 for which the solution (𝜂(t), 𝛿(t)) exists

d
dt

U1(𝜂(t), 𝛿(t)) ≤ −
k1

4
𝜂(t)2 −

(
1
2

b1k2 −
1
k1

)

𝛿(t)2

+ k1

2
v(𝜓t)2 + b1

k2
1

2k2
v1(𝜓t)2. (57)

The bound (57) was achieved using the inequalities−𝜂(t)𝛿(t) ≤ k1
4
𝜂(t)2 + 1

k1
𝛿(t)2,−𝜂(t)v(𝜓t) ≤ 1

2
𝜂(t)2 + 1

2
v(𝜓t)2

and −𝛿(t)v1(𝜓t) ≤
k2
2
𝛿(t)2 + 1

2k2
v1(𝜓t)2.

Next, consider the Lyapunov functional

V2(𝜂(t), 𝛿(t), 𝜓t) = U1(𝜂(t), 𝛿(t)) +
b2

2
G(𝜓t)2 =

1
2
(
𝜂(t)2 + b1𝛿(t)2 + b2G(𝜓t)2

)
(58a)

where b2 > 0 is a constant to be chosen and G is defined in (32).
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HAACKER et al. 13

Using Lemma 1 and definition (32), it holds that

|v1(𝜓t)| ≤ exp(𝜎A)G(𝜓t), ∀t ≥ 0. (59)

Using the above estimate, (57), (33) and defining b1 = 4
k2k1

, b2 =
(

k1
𝜎

+ b1
c1k2

1
𝜎k2

)
exp(2𝜎A), we obtain the

differential inequality

D+V2(𝜂(t), 𝛿(t), 𝜓t) ≤ −𝜎1V2(𝜂(t), 𝛿(t), 𝜓t), ∀t ≥ 0 (60)

where 𝜎1 = min
(

1
2

k1,
1
2

k2, 𝜎
)
> 0. Since estimate (60) implies that all solutions stay bounded for all times for

which they exist, we can conclude existence for all times.
The rest of the proof is exactly the same with the proof of Theorem 1. ▪

6 GLOBAL STABILIZATION WITH STATE CONSTRAINTS

The proposed controller (12a–c) unfortunately does not ensure that the dilution rate D(t) remains positive. This can be
observed in an example simulation in Figure 1. Whenever the signed control error y(t) − y∗ takes large negative values,
the controller tries to “add population.”

A classical approach to guarantee positivity of the dilution rate is to introduce a control barrier function (CBF)37

h(𝜂,D, 𝜓) = D, (61)

which imposes a positivity constraint on the state D, and where the task of the control law is not only to stabilized the
desired equilibrium but to also maintain the positivity of the CBF in the process. The common approach to maintaining
the positivity of a CBF is to “wrap” a safety filter around the nominal control law u0 = uc + us, so that the overall control
is given by

u = u0 + up = uc + us + up (62)

where up is the safety filter/override component of the controller that “penalizes” the negativity of the dilution and
overrides the nominal feedback u0 so that the dilution is kept positive.

The safety filter for a system that has actuator dynamics ̇D = u and CBF h = D is particularly simple and given in
Reference 37

up = max{0,−u0 − k3D}, k3 > 0, (63)

which ensures that

̇h(t) ≥ −k3h(t), (64)

namely, that ̇D(t) ≥ −k3D(t), that is, D(t) ≥ D(0) exp(−k3t) > 0 for D(0) > 0.
The representative example simulation in Figure 3 shows that the safety filter ensures the positivity of D(t) without

impacting the convergence to the desired equilibrium. However, proving that the region of attraction of an equilibrium
contains the entire safe set in the presence of a safety filter is impossible in general and has eluded us with this particular
system as well.

For this reason, we investigate the possibility of ensuring the positivity of D(t) with a stabilizing controller differ-
ent than the nominal control (12a–c). We next study system (1a–d) with state space  × (D,D), where 0 ≤ D < D∗

< D
are positive constants. The values of the constants D,D are determined by the technical characteristics of the biore-
actor but from a mathematical point of view the values of the constants D,D are considered to be arbitrary given
constants.
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14 HAACKER et al.

(A) (B)

(C) (D)

F I G U R E 3 Simulation results of system (1a–d) with parameters and initial condition (16a,b) and controller (62) and (63) with gains
k1 = 1, k2 = 2, k3 = 1. Negative dilution rates are prevented and convergence to the desired output y∗ = ydes is achieved. (A) Input. (B)
Output. (C) Dilution rate. (D) Population density.

Consider the diffeomorphism 𝛷 ∶ R → (D,D) defined by

D = 𝛷(𝜁) = D +
a1 exp(𝜁)

a2 + exp(𝜁)
(65)

with inverse 𝛷−1 ∶ (D,D) → R

𝜁 = 𝛷−1(D) = ln
(a2(D − D)

D − D

)

(66)

where

a1 = D − D > 0, a2 =
D − D∗

D∗ − D
> 0. (67)

Notice that by virtue of (65), (66) and (67) it holds that 𝛷−1(D∗) = 0 and 𝛷(0) = D∗.
Let k1, k2, k3 > 0 be given arbitrary positive constants (the controller gains) and consider the static output feedback

law

u(t) =
(D(t) − D)(D − D(t))

D − D

[
(k1 + k2)(D∗ − D(t)) − k3

(
𝛷

−1(D(t)) − k2 ln(y(t)∕y∗)
)]
. (68)

Our main result in this section is stated next.
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HAACKER et al. 15

Theorem 3 (Global asymptotic stabilization with dilution constrained to a finite positive interval). Let
Assumption 1 hold. Then for every k1, k2, k3 > 0, there exists a non-increasing function 𝜑 ∶ R+ → (0,+∞) and
a function 𝛼 ∈ ∞ such that for every (f0,D0) ∈  × (D,D) the unique solution (f [t],D(t)) ∈  × (D,D) of the
closed-loop system (1a–d) with (68) and initial condition (f [0],D(0)) = (f0,D0) exists for all t ≥ 0 and satisfies
the following stability estimate for all t ≥ 0

R2(f [t],D(t)) ≤ exp(−𝜑(R2(f0,D0))t)𝛼(R2(f0,D0)) (69)

where

R2(f ,D) ∶= max
a∈[0,A]

|
|
|
|
ln

f (a)
f ∗(a)

|
|
|
|
+ |𝛷−1(D)| (70)

for all (f ,D) ∈  × (D,D).

Discussion of Theorem 3: The stability estimate (69) shows Global Asymptotic Stability of the equilibrium point (f ∗,D∗)
for the closed-loop system (1a–d) with (68). However, there are important differences with the corresponding stability
estimate of Theorem 2.

1. The equilibrium point (f ∗,D∗) for system (1a–d) with (68) is stabilized in a special measure: the measure R2(f ,D) =
maxa∈[0,A] |ln(f (a)∕f ∗(a))| + |𝛷−1(D)| and not the measure R1(f ,D) = maxa∈[0,A] |ln(f (a)∕f ∗(a))| + |D − D∗| that was
used in Theorem 2. This is a consequence of the fact that the measure R1(f ,D) does not take into account the state
constraint for D. On the other hand, the measure R2(f ,D) takes into account all state constraints (notice that R2(f ,D)
“blows up” when the state tends to a point on the boundary of the state space). In other words, the measure R2(f ,D) is a
size functional for system (1a–d) with (58a) and state space  × (D,D) in the sense of Reference 30, while the measure
R1(f ,D) is not a size functional.

2. An interesting special case of this result is the case where the dilution has no upper bound but it must remain pos-
itive, namely, D = 0,D = +∞. Since a1∕D = 1 and a2∕D = 1∕D∗, the transformation (66) in this case simplifies to
𝜁 = 𝛷−1(D) = ln(D∕D∗), and the controller (68) simplifies to

u(t) = D(t)

[

(k1 + k2)(D∗ − D(t)) + k3 ln

(
D∗

D(t)

(
y(t)
y∗

)k2
)]

, (71)

whereas the state space becomes the “positive orthant”  × (0,+∞) and the measure R2 becomes R2(f ,D) =
maxa∈[0,A] |ln(f (a)∕f ∗(a))| + |ln(D∕D∗)|.

3. Theorem 3 guarantees Global Asymptotic Stabilization by means of the output feedback law (68) with exponential
convergence rate exactly as Theorem 2 does. To see this, notice that estimate (69) implies that for every 𝜖 > 0 and for
every (f0,D0) ∈  × (D,D) there exists T ≥ 0 for which R2(f [T],D(T)) ≤ exp(−𝜑(R2(f0,D0))T)𝛼(R2(f0,D0)) ≤ 𝜖. Using
the semigroup property and (69) we get the estimate

R2(f [t],D(t)) ≤ exp(−𝜑(𝜖)(t − T))𝛼(R2(f [T],D(T)))
≤ exp(−𝜑(𝜖)(t − T))𝛼(𝛼(R2(f0,D0))) (72)

for all t ≥ T. Combining, we get

R2(f [t],D(t)) ≤ exp(−𝜑(𝜖)t)
(

1 +
𝛼(R2(f0,D0))

𝜖

) 𝜑(𝜖)
𝜑(R2(f0 ,D0 ))

𝛼(𝛼(R2(f0,D0))) (73)

for all t ≥ 0. The above estimate shows a uniform exponential convergence rate𝜑(𝜖) > 0, for every 𝜖 > 0. Consequently,
the additional state constraint D ∈ (D,D), does not exclude the possibility of a uniform exponential convergence rate.

The proof of Theorem 3 shows that the controller gains k1, k2, k3 > 0 strongly affect the convergence properties of
the solutions of the closed-loop system (1a–d) with (68). Similarly, the parameters D,D strongly affect the convergence
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16 HAACKER et al.

(A) (B)

(C) (D)

F I G U R E 4 Simulation results of system (1a–d) with parameters and initial condition (16a,b) and controller (68) with gains k1 = 1,
k2 = 10, k3 = 1 and dilution interval (D,D) = (Dmin,Dmax) = (0.1, 1.5). The controller constrains the dilution rate D(t) ∈ (D,D) and
convergence to the desired output y∗ = ydes is achieved. (A) Input. (B) Output. (C) Dilution rate. (D) Population density.

properties of the solutions of the closed-loop system (1a–d) with (68): a tighter state constraint leads to slower conver-
gence and higher overshoots. The behavior of the solutions of the closed-loop (1a–d) with (68) is illustrated by means of
representative simulation example in Figure 4.

Having discussed Theorem 3 in detail, we next provide its proof.

Proof of Theorem 3. Using the transformations (17a,b), (18), (65) we get for the closed-loop system (1a–d)
with (68):

𝜂̇(t) =
a1a2(1 − exp(𝜁(t)))

(a2 + 1)(a2 + exp(𝜁(t)))
∶= f1(𝜁(t)) (74a)

̇
𝜁(t) = (k1 + k2)f1(𝜁(t)) − k3(𝜁(t) − k2𝜂(t) − k2v(𝜓t)) (74b)

𝜓(t) =
∫

A

0

̃k(a)𝜓(t − a) da. (74c)

where v(𝜓t) is defined by (21) and (29). Again, like in (28), we know that the map t → v(𝜓t) is well-defined
and the closed-loop (74a–c) locally admits a unique solution. Consider the functional G(𝜓t) defined by (32)
and define the function

U3(𝜂, 𝜁) =
1
2
𝜂

2 + b1

2
(𝜁 − k2𝜂)2 (75)

where b1 = 1
k1k2

. Using definition (75) and Equations (74a), (74b), we find that

d
dt

U3(𝜂(t), 𝜁(t)) =
1
k2
𝜁(t)f1(𝜁(t)) − b1k3(𝜁(t) − k2𝜂(t))2 + b1k2k3(𝜁(t) − k2𝜂(t))v(𝜓t) (76)
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HAACKER et al. 17

for all t ≥ 0 for which the solution of (74a–c) exists. Equation (76) in conjunction with the inequality 2k2(𝜁 −
k2𝜂)v(𝜓) ≤ (𝜁 − k2𝜂)2 + k2

2v(𝜓)2, gives for all t ≥ 0 for which the solution of (74a–c) exists:

d
dt

U3(𝜂(t), 𝜁(t)) ≤
1
k2
𝜁(t)f1(𝜁(t)) −

1
2

b1k3(𝜁(t) − k2𝜂(t))2 +
1
2

b1k2
2k3v(𝜓t)2. (77)

Using (34) we obtain from (77) the following differential inequality

d
dt

U3(𝜂(t), 𝜁(t)) ≤
1
k2
𝜁(t)f1(𝜁(t)) −

1
2

b1k3(𝜁(t) − k2𝜂(t))2 +
b1k2

2k3

2
exp(2𝜎A)G(𝜓t)2 (78)

for all t ≥ 0 for which the solution of (74a–c) exists. On the other hand, the differential inequality (33) in
conjunction with lemma 2.12 on pp. 77–78 in Reference 32 implies the following estimate

G(𝜓t) ≤ exp(−𝜎t)G(𝜓0) (79)

for all t ≥ 0 and consequently, we obtain from (78), (79), the following differential inequality that holds for all
t ≥ 0 for which the solution of (74a–c) exists:

d
dt

U3(𝜂(t), 𝜁(t)) ≤
1
k2
𝜁(t)f1(𝜁(t)) −

1
2

b1k3(𝜁(t) − k2𝜂(t))2 +
b1k2

2k3

2
exp(−2𝜎(t − A))G(𝜓0)2. (80)

Notice that by virtue of the fact that f1(𝜁) =
a1a2(1−exp(𝜁))
(a2+1)(a2+exp(𝜁))

(which implies that 𝜁 f1(𝜁) ≤ 0 for all 𝜁 ∈ R), we
obtain from (80) the following estimate for all t ≥ 0 for which the solution of (74a–c) exists:

d
dt

U3(𝜂(t), 𝜁(t)) ≤
b1k2

2k3

2
exp(−2𝜎(t − A))G(𝜓0)2. (81)

The above estimate in conjunction with lemma 2.12 on pp. 77–78 in Reference 32 implies that

U3(𝜂(t), 𝜁(t)) ≤ U3(𝜂(0), 𝜁(0)) +
b1k2

2k3

2𝜎
exp(2𝜎A)G(𝜓0)2 (82)

for all t ≥ 0 for which the solution of (74a–c) exists. For the positive definite quadratic function U3 defined by
(75), there exist constants c, c > 0 such that for all (𝜂, 𝜁) ∈ R2 it holds that

c
(
𝜂

2 + 𝜁2)
≤ U3(𝜂, 𝜁) ≤ c

(
𝜂

2 + 𝜁2)
. (83)

Inequalities (83), (82) show that the component (𝜂(t), 𝜁(t)) of the solution of (74a–c) is bounded for all times
t ≥ 0 for which the solution exists. Thus, the solution of (74a–c) exists for all t ≥ 0 and satisfies

𝜂

2(t) + 𝜁2(t) ≤ c
c
(
𝜂

2(0) + 𝜁2(0)
)
+

b1k2
2k3

2𝜎c
exp(2𝜎A)G(𝜓0)2 (84)

for all t ≥ 0. The fact that f1(𝜁) =
a1a2(1−exp(𝜁))
(a2+1)(a2+exp(𝜁))

and (75), (83) imply the existence of a non-increasing, positive
mapping 𝜑(s) > 0 defined for all s ≥ 0 with the property that for all s ≥ 0 the following estimate holds for all
(𝜂, 𝜁) ∈ R2 with 𝜁2

≤
c
c
s2 + b1k2

2k3

2𝜎c
exp(2𝜎A)s2:

1
k2
𝜁 f1(𝜁) −

1
2

b1k3(𝜁 − k2𝜂)2 ≤ −2𝜑(s)U3(𝜂, 𝜁). (85)

It follows from (80) and (84), (85) that the following estimate holds for all t ≥ 0:

d
dt

U3(𝜂(t), 𝜁(t)) ≤ −2𝜑(p0)U3(𝜂(t), 𝜁(t)) +
b1k2

2k3

2
exp(−2𝜎(t − A))G(𝜓0)2 (86)
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18 HAACKER et al.

where p0 ∶= |𝜂(0)| + |𝜁(0)| + G(𝜓0). Without loss of generality, we may assume that𝜑(s) ≤ 𝜎 for all s ≥ 0. The
differential inequality (86) in conjunction with lemma 2.12 on pp. 77–78 in Reference 32 implies the following
estimate for all t ≥ 0:

exp(2𝜑(p0)t)U3(𝜂(t), 𝜁(t)) ≤ U3(𝜂(0), 𝜁(0)) +
b1k2

2k3

4𝜑(p0)
exp(2𝜎A)G(𝜓0)2. (87)

Combining (87), (83), (79), we get for all t ≥ 0

|𝜂(t)| + |𝜁(t)| + exp(𝜎A)G(𝜓t) ≤ K(p0) exp(−𝜑(p0)t)(|𝜂(0)| + |𝜁(0)| + exp(𝜎A)G(𝜓0)) (88)

where K(s) is the non-decreasing function defined for s ≥ 0 by the equation

K(s) ∶= 3

√
c
c
+

√
b1k2

2k3

c𝜑(s)
. (89)

Using (45), (47), (66), (89), the fact that p0 ∶= |𝜂(0)| + |𝜁(0)| + G(𝜓0) and definition (70), we obtain the stability
estimate (69) for an appropriate 𝛼 ∈ ∞. The proof is complete. ▪

7 FULL-STATE STABILIZATION UNDER STATE CONSTRAINTS

The design that we just presented is mindful of three practical requirements:

1. dilution must remain above a given positive lower bound D > 0;
2. dilution must obey a given upper bound D < +∞;
3. only a bulk concentration y(t) is available for measurement, rather than an age-structured density f (a, t).

The price we pay for meeting all these practical requirements is a design that is quite complicated and that offers little
insight and generalizability to other situations. In the remainder of this section we present an alternative design, which
fails to obey two of the above requirements but is clear, elegant, and systematic.

First, we dispose of the requirement for a strictly positive lower bound D > 0 and only require the dilution to remain
positive. This is practically reasonable. Dilution/harvesting can be easily completely shut off. Second, we lift the fixed
upper bound requirement D < +∞ and require the dilution to merely be bounded.

Third, we allow the measurement of the full state of the system, namely, of the age-structured density f (a, t). This is a
stronger requirement as the age distribution of the population cannot be measured. However, the size distribution of the
population, which is proportional to the age distribution can be measured. We allow the full-state measurement only for
pedagogical reasons, and without loss of generality. The analysis is much cleaner, clearer, and exact when the full f (a, t)
is measured, as opposed to when only y(t) is measured.

So, we start by setting D = 0 and D = +∞. Then, we recall that

𝜂 = lnΠ(f ) (90)

𝜁 = ln D
D∗ . (91)

Next, we introduce a backstepping transformation

z = 𝜁 − c1𝜂, c1 > 0. (92)

Straightforward calculation then yields

𝜂̇ = D∗(1 − exp(𝜁))
= D∗(1 − exp(c1𝜂)) + D∗ exp(c1𝜂)(1 − exp(z)) (93)
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HAACKER et al. 19

̇
𝜁 = u

D
(94)

ż = u
D
− c1D∗(1 − exp(𝜁)). (95)

Before we design a controller, we introduce two positive definite radially unbounded functions,

𝜔(q) = exp(q) − 1 − q (96)

𝜇(q) = sinh2
(q

2

)
. (97)

Next, we introduce two Lyapunov functions,

V1 = 𝜔(−c1𝜂) (98)
V2 = 𝜔(𝜁 − c1𝜂) = 𝜔(z) (99)

and the overall Lyapunov function

V = 𝜃V1 + V2 = 𝜃𝜔(−c1𝜂) + 𝜔(𝜁 − c1𝜂), 𝜃 > 0. (100)

Noting that 𝜔′(z) = exp(z) − 1, as well as that

(exp(z) − 1)(exp(−z) − 1) = −4sinh2(z∕2), (101)

after a lengthy calculation, with intermediate steps that produce

̇V 1 = −4D∗c1𝜇(−c1𝜂) − D∗c1(exp(z) − 1)(exp(c1𝜂) − 1) (102)

̇V 2 = D∗(exp(z) − 1)
( u

D∗D
− c1(1 − exp(𝜁))

)
, (103)

we note that the feedback law

u = D∗D
{

c1
[
𝜃(exp(c1𝜂) − 1) + 1 − exp(𝜁)

]
+ c2(exp(c1𝜂 − 𝜁) − 1)

}
, (104)

with c2 > 0, produces a particularly elegant Lyapunov derivative,

̇V = −4D∗[𝜃c1𝜇(−c1𝜂) + c2𝜇(𝜁 − c1𝜂)], (105)

which is negative definite and radially unbounded. Global asymptotic stability of the equilibrium 𝜂 = 𝜁 = 0 then follows.
With the global exponential stability of the decoupled 𝜓-system, the global asymptotic stability of the (𝜂, 𝜓, 𝜁)-system
follows.

Theorem 4. The controller (104), rewritten in the original (f ,D)-variables as

u = D∗D
{

c1

[
𝜃

(
(Π(f ))c1 − 1

)
+ 1 − D

D∗

]
+ c2

(D∗

D
(Π(f ))c1 − 1

)}
, (106)

with gains c1, c2, 𝜃 > 0, guarantees that there exists a class function 𝛽 such that

max
a∈[0,A]

|
|
|
|
ln

f (a, t)
f ∗(a)

|
|
|
|
+
|
|
|
|
ln D(t)

D∗

|
|
|
|
≤ 𝛽

(

max
a∈[0,A]

|
|
|
|
ln

f0(a)
f ∗(a)

|
|
|
|
+
|
|
|
|
ln D0

D∗

|
|
|
|
, t
)

, ∀t ≥ 0 (107)

for all f0 ∈  and D0 > 0.

This design with D ∈ (0,+∞) calls for a reexamination of the more difficult problem where D ∈ (D,D) and 0 ≤ D <

D∗
< D. We omit much of the detail and summarize the design and analysis.
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20 HAACKER et al.

Let us denote

𝛿1 =
D∗ − D

D∗ , n =
D∗ − D

D − D∗
. (108)

One gets

𝜂̇ = D∗
𝛿1

1 − exp(𝜁)
1 + n exp(𝜁)

, 𝜁 = ln
(

1
n

D − D

D − D

)

(109)

̇
𝜁 = D − D

(D − D)(D − D)
u (110)

and

̇V 1 = −4D∗c1
𝛿1

1 + n exp(c1𝜂)
𝜇(−c1𝜂)

− D∗c1
𝛿1(1 + n)

(1 + n exp(c1𝜂))2
(exp(c1𝜂) − 1)(exp(z) − 1). (111)

With further calculations, one obtains

̇V = −4D∗
[

𝜃c1
𝛿1

1 + n exp(c1𝜂)
𝜇(−c1𝜂) + c2𝜇(𝜁 − c1𝜂)

]

(112)

with the controller

u = D∗

D − D
(D − D)(D − D)

{

c1

[

𝜃

𝛿1(1 + n)
(1 + n exp(c1𝜂))2

(exp(c1𝜂) − 1) +
1 − exp(𝜁)

1 + n exp(𝜁)

]

+c2(exp(c1𝜂 − 𝜁) − 1)}

= D∗

D − D
(D − D)(D − D)

{

c1

[

𝜃

𝛿1(1 + n)
(
1 + n(Π(f ))c1

)2

(
(Π(f ))c1 − 1

)
+ 1 − 1

n
D − D

D − D

]

+c2

(

n D − D
D − D

(Π(f ))c1 − 1
)}

. (113)

This is clearly a considerably more complicated controller than (68) but the simplicity of the negative definite, radially
unbounded (112) makes this controller worth consideration.

Theorem 5. The controller (113) with gains c1, c2, 𝜃 > 0, guarantees that there exists a class function 𝛽 such
that

max
a∈[0,A]

|
|
|
|
ln

f (a, t)
f ∗(a)

|
|
|
|
+
|
|
|
|
|
|

ln

(
D(t) − D
D∗ − D

D − D∗

D − D(t)

)|
|
|
|
|
|

≤ 𝛽

(

max
a∈[0,A]

|
|
|
|
ln

f0(a)
f ∗(a)

|
|
|
|
+
|
|
|
|
|
ln
(D0 − D

D∗ − D
D − D∗

D − D0

)|
|
|
|
|
, t

)

, ∀t ≥ 0 (114)

for all f0 ∈  and D0 ∈ (D,D).
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8 CONCLUSION

Let us now systematize the catalog of controllers presented:

1. Controller in Reference 4 is simply a saturated (for positivity of dilution) static proportional feedback of the logarith-
mically scaled output, where the logarithmic scaling is not needed but used only to achieve exponential stability of the
first mode of the population concentration age profile.

2. Controller (12a–c) is a standard backstepping extension of the controller from Reference 4, using full-state feedback
from the chemostat PDE.

3. Controller (54) relaxes the full-state feedback requirement of (12a–c) and simply augments the controller from
Reference 4 with proportional feedback of the dilution regulation error.

4. Controller (68) is the paper’s most general design, achieving global stabilization with only output feedback, while
compelling the dilution to remain within any positive interval that contains the setpoint dilution.

5. Controller (106) is a full-state design for which positivity of dilution and global stabilization are both achieved with a
Lyapunov analysis that is the least conservative (no majorizations involved) and clearest.

The interest in further extending the foundational design and analysis results in Reference 4 goes in many directions.
Among them, the most interesting at this stage are in incorporating additional dynamics, which may arise for a variety of
reasons (the presence of actuator dynamics, a substrate, input delay, additional species, etc.). In this paper we made what
is probably most natural non-trivial step—incorporating actuator dynamics in the form of a single state. Compensating
these actuator dynamics was not exceptionally difficult but ensuring that, in addition to the population density remaining
positive, the state of the actuator dynamics remains positive as well, or even remains within a given positive interval, is
far from elementary and charts a path towards further generalizations.

Among the further generalizations are those that bring into the model additional infinite-dimensional states. One
such addition is an input delay, which can be compensated using predictor feedback. Other additions of infinite dimen-
sional states are additional species. Even two species can be interconnected in several ways, of which some require
no innovations in the control design, while other types of interconnections do. Such generalizations of the chemostat
problem into population systems, of which epidemiology is one possible application, open exciting possibilities for future
research.
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APPENDIX A. PROOF OF TECHNICAL LEMMAS

Proof of Lemma 1. We rewrite (50), by bringing the expression to a common denominator and rearranging
terms, as

−v1(𝜓t) =
−1

∫
A

0 p(a)f ∗(a)(1 + 𝜓(t − a))da
T3(𝜓t) (A1)

where

T3(𝜓t) = p(A)f ∗(A)(T4(𝜓t) − 𝜓(t − A)) − p(0)f ∗(0)(T4(𝜓t) − 𝜓(t)) (A2)

−
∫

A

0
p̃(a)f ∗(a)daT4(𝜓t) +

∫

A

0
p̃(a)f ∗(a)𝜓(t − a)da (A3)

T4(𝜓t) =
1
y∗∫

A

0
p(a)f ∗(a)𝜓(t − a)da. (A4)

By means of the definition of y∗ (5) and the nonnegativity of p, f ∗ on [0,A], it holds that

|T4(𝜓t)| ≤ max
a∈[0,A]

|𝜓(t − a)|. (A5)

Taking the absolute value of (A2) and using (A5) we arrive at

|T3(𝜓t)| ≤
√

c1y∗ max
a∈[0,A]

|𝜓(t − a)| (A6)

with

1
2
√

c1y∗ = p(A)f ∗(A) + p(0)f ∗(0) +
∫

A

0
|p̃(a)|f ∗(a)da > 0. (A7)

We note, that c1 is independent of the chosen setpoint y∗. With nonnegativity of p(a) and f ∗(a) for a ∈ [0,A]
and 1 + 𝜓(t − a) > 0 for all (a, t) ∈ [0,A] ×R+, we note that

|v1(𝜓t)| =
1

∫
A

0 p(a)f ∗(a)(1 + 𝜓(t − a))da
|T3(𝜓t)| (A8)

and

∫

A

0
p(a)f ∗(a)𝜓(t − a)da ≥ y∗ min

a∈[0,A]
𝜓(t − a) (A9)

yields (53) using (A6). ▪
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