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a b s t r a c t

In this paper we consider the port Hamiltonian formulation of systems of two conservation laws defined
on two complementary intervals of some interval of the real line and coupled by some moving interface.
We recall first how two port Hamiltonian systems coupled by an interface may be expressed as an port
Hamiltonian systems augmented with two variables being the characteristic functions of the two spatial
domains. Then we consider the case of a moving interface and show that it may be expressed as the
previous port Hamiltonian system augmented with an input, being the velocity of the interface and its
conjugated output variable. We then discuss the interface relations defining the dynamics of the
displacement of the interface and give an illustration with the simple example of two gases coupled by a
moving piston.

& 2013 Published by Elsevier Ltd. on behalf of European Control Association.

1. Introduction

It has been shown that a large class of physical distributed
parameter systems with boundary external variables admit a port
Hamiltonian formulation called boundary port Hamiltonian systems
[24,20,16]. This structure has led to various methods of analysis of
the existence of solutions, their well-posedness and control in the
linear case [17,15,25,27,26,14] but also for coupled distributed and
localized parameter systems [22,18].

In this paper we shall investigate whether the port Hamiltonian
formulation may be extended to systems of conservation laws
coupled by some moving interface. Such systems occur in various
cases when the system is heterogeneous in the considered spatial
domain, leading to consider several phases. The most simple
example (which we shall also consider here) consists in two fluids
which are separated by some moving wall. This wall separates two
phases, the two fluids which might have different properties and
induces some discontinuities of some variables at the interface.
These discontinuities are the consequence of the model of the
interface defined by a set of interface relations. The wall separating
the two fluids may permit, or not, a mass flow or a pressure
discontinuity for instance. The interfaces arise in models of
different chemical processes such as polymer nanoparticules in a
fluid [13] or evaporation processes where an interface separates
the domain of existence of liquid, vapor phase or their mixture

[19]. Interfaces may also separate subdomains of the spatial
domain, depending on the existence of constraints on some of
the state variables such as the volume and leading to a change of
causality of the dynamical model [9].

More precisely we are inspired by a classical approach devel-
oped for fixed interfaces, consisting in augmenting the system of
conservation laws of the physical model with trivial conservation
laws associated with the so-called color functions which are
actually the characteristic functions of the spatial domains sepa-
rated by the interface [12,11,3,5]. In a first instance we shall show
that this system of conservation laws may be formulated as port
Hamiltonian system with a pair of port variables associated with
the interface. In a second instance we shall first generalize the
previous approach to moving interfaces and show that it may
again be formulated as a port Hamiltonian system by adding a
second pair of port variables corresponding to the displacement of
the interface. In this model, the velocity of the interface appears
like an input and the interface relations defining the dynamics of
the displacement of the interface are then defined as an external
port-based model. In the whole paper the spatial domain is an
interval of the real line and we shall consider systems of two
conservation laws.

The sketch of the paper is the following. In a first part we consider
two Hamiltonian systems of two conservation laws coupled by a
fixed interface. We first recall the definition of Stokes-Dirac structures
and the boundary port Hamiltonian formulation of a system of two
conservation laws with flux variables deriving from a Hamiltonian.
Then we recall the extended systems obtained by introducing
color functions, associated with the characteristic functions of the
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spatial domains defined by the interface. We then define a Dirac
structure and the port Hamiltonian formulation of the systems of
conservation laws coupled by a fixed interface. In the second part
we consider a moving interface and generalize the formulation of
the coupled system of conservation laws before formulating it in
the port Hamiltonian frame. Finally we introduce the interface
relations defining the dynamics of the interface as a two-port
element and give an illustration on the simple example of two
gases coupled by a piston.

2. Two port Hamiltonian systems coupled by an interface

2.1. Port Hamiltonian system of two conservation laws

Let us recall briefly in this section the port Hamiltonian formula-
tion of a system of two conservation laws according to [24],
representing two physical domains in canonical interaction as they
may arise in the description of the electrical transmission line, the
vibrating string, the p-system [24,20,16].

We shall consider systems of two conservation laws

∂txþ∂zN xð Þ ¼ 0 ð2:1Þ
defined on some spatial domain being the interval Z ¼ ½a; b�

and with time tARþ with the 2-dimensional state vector xðz; tÞ ¼
x1ðz;tÞ
x2ðz;Þ

� �
. The flux variables are defined by

N ðxÞ ¼ 0 1
1 0

� � δx1H
δx2H

 !
ð2:2Þ

generated by the Hamiltonian functional HðxÞ ¼ R b
a HðxÞ dz with

Hamiltonian density function HðxÞ (where δxH denotes the varia-
tional derivative of H with respect to x). Then the system of
conservation laws (2.1) with the closure relations (2.2) may be
rewritten as the Hamiltonian system

∂tx¼J δxH ð2:3Þ
generated by the Hamiltonian functional HðxÞ and defined with
respect to the differential operator

J ¼
0 �∂z
∂nz 0

 !
ð2:4Þ

where ∂nz is the formal adjoint of the operator ∂z. Indeed if the flux
variables (2.2) satisfy the boundary conditions given by δx1HðaÞ ¼
δx1HðbÞ ¼ δx2HðaÞ ¼ δx2HðbÞ ¼ 0, then ∂nz ¼ �∂z and Eq. (2.3) is
precisely (2.1) and (2.2). Under the same conditions, the operator
J is skew-symmetric. Furthermore as it is a matrix differential
operator with constant coefficients, it satisfies the Jacobi identities
and is a Hamiltonian operator, defining a Poisson bracket on the
functionals of the state variables [21].

However for control purposes, it should precisely be assumed
that the variational derivatives (equal to the flux variables) do not
vanish at the boundaries in order to allow for energy exchange of
the system with its environment. Therefore the Hamiltonian
system (2.3) is augmented with the boundary port variables

f ∂
e∂

 !
¼ δx1H

δx2H

� �����
a;b

¼ 0 1
1 0

� � δx1H
δx2H

 !����
a;b

ð2:5Þ

and is thereby extended to a boundary port Hamiltonian system
defined with respect to a Stokes-Dirac structure which extends the
Hamiltonian operator (2.4) [24,20,16].

Let us recall the definition of a Dirac structure which will be
extensively used in this paper.

Definition 1 (Courant [8]). Consider two real vector spaces, F the
space of flow variables and E the space of effort variables, together

with a pairing, that is, a bilinear product

F � E : -R

ðf ; eÞ↦〈e; f 〉 ð2:6Þ

which induces the symmetric bilinear form ≪;≫ on the bond
space B¼F � E 3 ðf ; eÞ of conjugated power variables defined as

≪ðf 1; e1Þ; ðf 2; e2Þ≫≔〈e1; f 2〉þ〈e2; f 1〉; ðf i; eiÞAF � E ð2:7Þ

A Dirac structure is a linear subspace D�F � E which is isotropic
and co-isotropic that is satisfied, D¼D? , with ? denoting the
orthogonal complement with respect to the bilinear form ≪;≫.

Particular Dirac structures, called Stokes-Dirac structures, are
associated with Hamiltonian differential operators [24,16,15]; here
we recall the particular case of the Stokes-Dirac structure asso-
ciated with the Hamiltonian operator J defined in (2.4).

Proposition 2 (van der Schaft and Maschke [24]). The linear sub-
space of the bond space B¼F � E, product space of the space of flow
variables F and effort variables E where F ¼ E ¼ L2ðða; bÞ;R2Þ � R2

defined by

D¼
f 1
f 2
f ∂

0
B@

1
CA;

e1
e2
e∂

0
B@

1
CA

0
B@

1
CAAF � E=

8><
>:

e1
e2

 !
AH1ðða; bÞ;R2Þ2;

f 1
f 2

 !
¼J e1

e2

 !

and
f ∂
e∂

 !
¼ 0 1

1 0

� � e1
e2

 !�����
a;b

9=
; ð2:8Þ

is a Dirac structure, called Stokes-Dirac structure, with respect to the
pairing

h f 1
f 2
f ∂

0
B@

1
CA;

e1
e2
e∂

0
B@

1
CAi¼

Z b

a
ðf 1e1þ f 2e2Þ dzþe>

∂ Σ f ∂

with

Σ ¼ diagð�1;1Þ ð2:9Þ

In the same way as Hamiltonian systems are defined with
respect to a Hamiltonian operator, boundary port Hamiltonian
systems are defined with respect to Stokes-Dirac structures
[23,10]. Again we refer to [24,16,15] for the general definition of
boundary port Hamiltonian defined respect to Stokes-Dirac struc-
ture and will only recall the definition for the case of a system of
two conservation laws.

Proposition 3 (van der Schaft and Maschke [24]). The Hamiltonian
system of two conservation laws (2.3) augmented with the port
variables (2.5) is equivalent to

∂tx1
∂tx2
f ∂

0
B@

1
CA;

δx1H
δx2H
e∂

0
B@

1
CA

0
B@

1
CAAD ð2:10Þ

and defines a boundary port Hamiltonian system.

As a consequence of the properties of the Stokes-Dirac struc-
ture [24], the Hamiltonian function satisfies the following balance
equation:

d
dt

H ¼ �e>
∂ Σf ∂
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2.2. Interconnection of port Hamiltonian systems through an
interface

In this section we recall briefly how port Hamiltonian systems
are coupled through their boundaries. Therefore consider two port
Hamiltonian systems (2.10) which are defined in two spatial
domains ½a; 0½ and �0; b� which are respectively two intervals of
R� and Rþ and denote their state variables and Hamiltonian with
exponent � and þ depending on which half real line they are
defined.

For boundary port Hamiltonian systems it is natural to express
the interface relations using the boundary port variables (2.5) which
are in fact, in the case of the canonical systems of two conservation
laws, actually the flux variables (2.2) evaluated at the interface. In
this case the spaces of flow and effort variables of the complete
system are defined as the product spaces of the flow and effort

spaces on each domain: F ¼ E ¼ L2ðða; 0Þ;R2Þ � R2 � L2ðð0; bÞ;R2Þ
�R2 and the Dirac structure is defined with respect to the product
operator of (2.4)

J 02

02 J

 !

Considering for instance the interface relations being the
balance equation δxþ

1
Hþ þδx�

1
H� ¼ 0 and the continuity equation

δxþ
2
Hþ ¼ δx�

2
H� , and writing them in vector notation, one obtains

the linear relation between the conjugated power variables

δx�
2
H�

δxþ
1
Hþ

0
@

1
A ð0þ Þ ¼ 0 1

�1 0

� � δx�
1
H�

δxþ
2
Hþ

0
@

1
A ð0� Þ
��

������ ð2:11Þ

they may immediately be interpreted as defining a Dirac structure
on the boundary port variables at the interface. Then, by composi-
tion of Dirac structures, the two boundary port Hamiltonian
systems are composed of a single boundary port Hamiltonian
system with boundary port variables being defined by δx� H� ðaÞ
and δxþ Hþ ðbÞ, according to (2.5) [24].

In the sequel of the paper, we shall consider the following
interface relations where the pair of interface port variables ðf I ; eIÞ
is introduced

f I ¼ δxþ
2
Hþ ¼ δx�

2
H� ð2:12Þ

0¼ δxþ
1
Hþ þδx�

1
H� þeI ð2:13Þ

Eq. (2.12) is again a continuity equation and Eq. (2.13) is a balance
equation with an external term eI . These are commonly consid-
ered interface relations [12,5,3] consisting of the continuity
equation of one of the flux variable (then called privileged variable)
and the introduction of a source term at the interface, in the
balance equation of the other flux variable [4]. Denoting eþ

i ¼
δxþ

i
Hþ and e�

i ¼ δx�
i
H� with i¼ 1;2, the interface relations (2.12)

(2.13) define the linear relations between the conjugated power
variables

e�
2

eþ
1

f I

0
B@

1
CA ð0þ Þ ¼

0 1 0
�1 0 �1
0 1 0

0
B@

1
CA

e�
1

eþ
2

eI

0
B@

1
CA ð0� Þ
��

������� ð2:14Þ

with respect to a nonlinear matrix and therefore define a Dirac
structure.

The interface relations may of course be much more general
using nonlinear functions of the flux variables at the interface, port
variables coupled to a dynamical system: if the interface relations
define a Dirac structure coupled to a dissipative port Hamiltonian
systems then by composition of Dirac structures, a dissipative port

Hamiltonian system is obtained on the product space of the state
space of the subsystems [7] as for instance in [22,18].

However in the sequel we shall depart from this procedure of
composition of boundary port Hamiltonian systems. Indeed, as a
consequence of considering moving interfaces, time-varying spa-
tial domains have to be considered. These do not appear explicitly
as variables in the definition of boundary port Hamiltonian
systems. This is the reason why, in the remaining of the paper,
we shall use additional state variables, the characteristic functions
of the time-varying spatial domains of each subsystem.

2.3. Augmenting the port Hamiltonian systems with color functions

2.3.1. Prolongation of the variables on the domain ½a; b�
We shall follow the approach suggested in [12,5,3] where

instead of considering the product spaces of the variables defined
in the different spatial domains, the state variables of the coupled
systems are defined on the composed spatial domain, the interval
½a; b�. The interface at z¼0 becomes then an interior point of the
spatial domain, however some external variables are still asso-
ciated with the interface. Following [1,6,2] we use the character-
istic functions of the domains of the two systems

c0ðz; tÞ ¼
1 8zA ½a;0½
0 8zA ½0; b�

(
and c0ðz; tÞ ¼

1 8zA �0; b�
0 8zA ½a;0�

(
ð2:15Þ

Hence the state variables of the coupled system may be
expressed as the sum of prolongations of the variables of each
subsystem to the total spatial domain Z ¼ ½a; b� by
xðz; tÞ ¼ x� ðz; tÞþxþ ðz; tÞ ð2:16Þ

x� ðz; tÞ ¼ c0ðz; tÞxðz; tÞ xþ ðz; tÞ ¼ c0ðz; tÞxðz; tÞ ð2:17Þ
And the flux variable of the two conservation laws becomes

N ðx; c0; c0Þ ¼ c0N � ðxÞþc0N þ ðxÞ ð2:18Þ
with

c0N ðx; c0; c0Þ ¼ c0 N � ðxÞ ð2:19Þ

c0N ðx; c0; c0Þ ¼ c0 N þ ðxÞ ð2:20Þ
where it should be noticed that N � ðxÞ and N þ ðxÞ in (2.18), (2.19),
(2.20) are different flux functions in general.

2.3.2. Conservation laws and interface relations as a single system
of balance equations

We shall now consider the two systems of Hamiltonian con-
servation laws coupled by the interface relations defined in (2.12)
and (2.13). As a consequence of these relations, considering the
definition of the flux variables (2.2), it appears that the flux
variable N 1 satisfies a continuity equation at the interface whereas
the flux variable N 2 satisfies a balance equation at the interface.

In the first instance, let us consider the conservation law of the
state variablex1 which may be written as (on the whole domain
½a; b�)
∂tx1 ¼ �∂zðc0N �

1 ðxÞþc0N þ
1 ðxÞÞ

¼ �∂zðc0N 1ðx; c0; c0ÞþcN 1ðx; c0; c0ÞÞ
¼ �½∂z c0:þ∂z c0:�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

d0

N 1ðx; c0; c0Þ ð2:21Þ

where the operator

d0 ¼ �½∂z c0:þ∂z c0:� ð2:22Þ
acts as the differential operator �∂z on each sub-domain (accord-
ing to the system (2.3) and (2.4)).

Indeed (2.21) corresponds to the local formulation of the
conservation laws on arbitrary domain ½a′; b′� with either on an
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interval ½a′; b′� on the negative real line (ara′rb′o0 )

d
dt

Z b′

a′
x1ðz; tÞ ¼ �N �

1 ða′; tÞþN �
1 ðb′; tÞ

or on an interval ½a′; b′� on the positive real line ð0oa′ob′rbÞÞ
d
dt

Z b′

a′
x1ðz; tÞ ¼ �N þ

1 ða′; tÞþN þ
1 ðb′; tÞ

Now let us consider the formulation of the conservation law of
x1 on an arbitrary interval ½a′; b′� containing the interface (with
ara′o0ob′rb). The assumption the continuity of the flux
variable N 1 implies the following consequence on the conserva-
tion law of the variable x1

d
dt

Z b′

a′
x1ðz; tÞ dz¼

d
dt

Z 0

a′
x1ðz; tÞ dzþ

d
dt

Z b′

0
x1ðz; tÞ dz

¼
Z b′

a′
d0N 1ðx; c0; c0Þ dz

¼
Z b′

a′
�½∂z c0:þ∂z c0:� N 1ðx; c0; c0Þ dz

¼ �N �
1 ða′; tÞþN �

1 ð0� ; tÞ�N þ
1 ð0� ; tÞþN þ

1 ðb′; tÞ
¼ �N �

1 ða′; tÞþN þ
1 ðb′; tÞ

¼ �N 1ða′; tÞþN 1ðb′; tÞ
¼ �e2ða′; tÞþe2ðb′; tÞ ð2:23Þ

In the second instance, let us consider the conservation law of the
state variable x2 and remind that, at the interface, the associated
flux variable N 2 is supposed to satisfy the balance equation (2.13)
with the source term eIδðzÞ (a Dirac distribution), localized at the
interface. But firstly we have to calculate the dual operator,
denoted by dn

0, to the operator d0 defined in (2.22), in order to
be able to express the power pairing. Therefore consider two effort
variables e1 and e2 and computeZ b

a
e1ðd0 e2Þ dz¼ �

Z b

a
ðe1½∂z c0:þ∂z c0:�e2Þ dz

¼ �
Z b

a
ðe1½∂zðc0e2Þþ∂zðc0e2Þ�Þ dz

¼ �½ðc0þc0Þe1e2�baþ
Z b

a
ðc0e2þc0e2Þð∂ze1Þ dz

¼ �½ðc0þc0Þe1e2�ba

þ
Z b

a
e2½∂z c0:þ ∂z c0:�e1 dz�

Z b

a
e2½ð∂z c0Þþð∂z c0Þ�e1 dz

Hence the dual operator is defined by

dn

0 ¼ ½∂z c0:þ∂z c0:��½ð∂z c0Þþð∂z c0Þ�
¼ �d0þ½ð∂z c0Þþð∂z c0Þ� ð2:24Þ

Using this dual operator the conservation law of the variable x2
becomes

∂tx2 ¼ �dn

0N 2�eIδðzÞ ð2:25Þ
where δðzÞ denote the Dirac mass. Indeed, using similar calculation
as in the preceding paragraph, one shows that (2.25) corresponds
to the local formulation of the conservation laws on arbitrary interval
½a′; b′� on the negative real line (ara′rb′o0 ) or on the positive
real line (0oa′ob′rb ). On these intervals the operator �dn

0 acts as
the differential operator �∂nz according to the Hamiltonian system
(2.3) and (2.4).

On an arbitrary interval a′; b′
� 	

containing the interface (with
ara′o0ob′rb), the balance equation on the variable x2 is

d
dt

Z b′

a′
x2ðz; tÞ ¼

Z b′

a′
�dn

0 N 2ðx; c0; c0Þ�eIðtÞδðzÞ

 �

dz

¼
Z b′

a′
fðd0�½ð∂z c0Þ�ð∂z c0Þ�ÞN 2ðx; c0; c0Þ�eIðtÞδðzÞg dz

¼
Z b′

a′
d0N 2ðx; c0; c0Þ dz

þ
Z b′

a′
fð½ð∂z c0Þ�ð∂z c0Þ�ÞN 2ðx; c0; c0Þ�eIðtÞδðzÞg dz

¼ �N �
2 ða′; tÞþN �

2 ð0� ; tÞ�N þ
2 ð0� ; tÞþN þ

2 ðb′; tÞ

�N �
2 ð0� ; tÞþN þ

2 ð0� ; tÞ�
Z b′

a′
eIðtÞδðzÞ dz

¼ �N �
2 ða′; tÞþN þ

2 ðb′; tÞþeIðtÞ
¼ �e1ða′; tÞþe1ðb′; tÞ�eIðtÞ ð2:26Þ
On this balance equation, it appears clearly that the flux variables

at the interface N �
2 ð0� ; tÞ and N þ

2 ð0� ; tÞ are eliminated accord-
ing to the balance equation (2.13).

2.3.3. Hamiltonian system extended with color functions
In the preceding paragraph we have formulated the dynamical

equations off the system with an interface, as the system of
balance equations (2.21) and (2.25) using the dual differential
operators (2.22) and (2.24) which depend on the characteristic
functions of the two domains separated by the interface. Following
[12,5,3], we shall introduce explicitly these functions as variables
of the system; they are then called color functions and will be
denoted by cðz; tÞ and cðz; tÞ. Noticing that the spatial domains
separated by the fixed interface are constant, hence also their
characteristic functions c0 and c0 defined in (2.15), it is clear that
they satisfy the trivial conservation laws

∂tc¼ ∂tc ¼ 0 ð2:27Þ
with initial conditions being precisely c0 and c0 and compatible
boundary conditions.

In the sequel we shall define an extended Hamiltonian system
composed of the two balance equations (2.21) and (2.25) with
closure equations (2.2) indexed by þ and � for each spatial
subdomain and augmented with the trivial conservation laws
(2.27). Therefore define the Hamiltonian functional Hðx; c; cÞ ¼R b
a Hðx; c; cÞ dz with density

Hðx; c; cÞ ¼ c H� ðxÞþc Hþ ðxÞ ð2:28Þ
Denoting the extended state variable by

~x ¼ ðxT ; c; cÞT ð2:29Þ
one computes the variational derivatives

δ ~xHð ~xÞ ¼
δxHðx; c; cÞ
δcHðx; c; cÞ
δcHðx; c; cÞ

0
B@

1
CA¼

cδxH� ðxÞþcδxHþ ðxÞ
H� ðxÞ
Hþ ðxÞ

0
B@

1
CA ð2:30Þ

Note that the first row corresponds precisely to the definition of
the flux variable (2.18) for the particular solution c0 and c0

δxHðx; c; cÞ ¼ cδxH� ðxÞþcδxHþ ðxÞ ¼ cN � ðxÞþcN þ

ðxÞ ¼N ðx; c; cÞ
This allows to augment the Hamiltonian system (2.3) with the

trivial conservation laws of the color functions (2.27) obtaining the
Hamiltonian system

∂t ~x ¼J aδ ~xHð ~xÞþ IeI ð2:31Þ

IT ¼ ð0 �1 0 0Þ ð2:32Þ
with respect to the operator

J a ¼
0 d

�dn 0
02

02 02

0
B@

1
CA ð2:33Þ
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where operator d is the nonlinear differential operator, modulated
by cðz; tÞ and cðz; tÞ defined by

d¼ �½∂z c:þ∂ c:� ð2:34Þ

and its formal dual

dn ¼ �dþ½ð∂z cÞ�ð∂z cÞ� ð2:35Þ

Furthermore the two operators satisfy, for any two effort
variables e1 and e2 which do not vanish at the boundaryZ b

a
e1ðd e2Þ dz¼

Z b

a
e2ðdn e1Þ dz�½ðcþcÞe1e2�ba ð2:36Þ

2.3.4. Extension to a boundary Port Hamiltonian system
In order to take account of the energy exchange at the

boundary fa; bg and defining a conjugated flow variable fI to the
interface source term eI at the interface, the Hamiltonian system
(2.31) will now be extended to a port Hamiltonian systems with
boundary and distributed ports. In the begin, the operator J a

defined in (2.33) and the input map at the interface defined by
(2.32) are extended to a Stokes-Dirac structure using a similar
procedure as in [24].

Proposition 4. The set of relations DI associated with a system of
two conservation laws defined on the variables x1

x2

� �
defined on a

spatial domain ½a; b� 3 z with an interface at the point z¼0 which
imposes the continuity of the effort variable e2 and allows for the
discontinuity of the effort variable e1 which is defined by

DI ¼
~f

f I
f ∂

0
BB@

1
CCA;

~e

eI
e∂

0
B@

1
CA

0
BB@

1
CCAAF � E=

8>><
>>:
~f

f I

 !
¼ J a I

� IT 0

� � ~e

eI

 !

and
f ∂
e∂

 !
¼

0 1
ðcþcÞ 0

 !
e1
e2

 !
a;b

9>>=
>>; ð2:37Þ

with the flow variable ~f ¼ ðf 1; f 2; f c; f c ÞT and the effort variable
~e ¼ ðe1; e2; ec; ec ÞT associated with the extended state (2.29), the
differential operator J a defined in (2.33), the operators d, resp. dn

defined in (2.34), resp. (2.35), the column vector I defined in (2.32),
and bond space B¼F � E with F ¼ E ¼ L2ðða; bÞ;RÞ5 � R2 endowed
with the pairing

h ~f

f I
f ∂

0
BB@

1
CCA;

~e

eI
e∂

0
B@

1
CAi¼

Z b

a
~eT ; ~f dzþeT∂Σf ∂þ

Z b

a
eTI f I dz ð2:38Þ

with Σ defined in (2.9) defines a Dirac structure.

One may notice immediately that the pair of port variables
ðeI ; f IÞ at the interface is distributed variables. Let us prove in the
sequel that the set (3.12) is indeed a Dirac structure. Note that we
shall use the following notation:

f ¼
~f

f I
f ∂

0
BB@

1
CCA; e ¼

~e

eI
e∂

0
B@

1
CA ð2:39Þ

Let us first show the isotropy condition DI �D?
I

〈〈ðf 1 ; e1 Þ; ðf 2 ; e2 Þ〉〉¼ 0 8ðf 1 ; e1 Þ; ðf 2 ; e2 Þ �DI ð2:40Þ

with respect to the bilinear product associated with the pairing
(2.38) and denoted in the sequel by P

P ¼ 〈〈ðf 1 ; e1 Þ; ðf 2 ; e2 Þ〉〉
¼ 〈f 1 ; e2 〉þ〈f 2 ; e1 〉

¼
Z b

a
~e2T ~f

1
dzþ

Z b

a
~e1T ~f

2
dzþ

Z b

a
e1I

Tf 2I dzþ
Z b

a
e2I

Tf 1I dz

þe1∂
TΣ1 f 2∂ þe2T∂ Σf 1∂ ð2:41Þ

Using the constitutive relations of the set DI , the power product
becomes

P ¼
Z b

a
ðe21de12þe22½ð�dnÞe11�e1I �Þ dz

þ
Z b

a
ðe11de22þe12½ð�dnÞe21�e2I �Þ dz

þ
Z b

a
e1I e

2
2 dzþ

Z b

a
e2I e

1
2 dzþ½ðcþcÞe11e22�baþ½ðcþcÞe21e12�ba

and after noticing that the terms in the interface variables eI1 and
eI2 cancel may be reorganized as follows:

P ¼
Z b

a
ðe21de12þe12ð�dnÞe21Þ dzþ½ðcþcÞe21e12�ba

þ
Z b

a
ðe22ð�dnÞe11þe11de

2
2Þ dzþ½ðcþcÞe11e22�ba

and using the identity (2.36), one obtains that P ¼ 0 which proves
the isotropy condition.

Let us now prove the co-isotropy condition D?
I �DI . This

amounts to prove that if ðf 2; e2ÞAB satisfies 8ðf 1; e1ÞADI ;

〈〈ðf 1; e1Þ; ðf 2; e2Þ〉〉¼ 0 then ðf 2; e2ÞADI . Therefore let us compute

the bilinear product (2.41), assuming that ðf 1; e1ÞADI . One com-
putes

P ¼
Z b

a
ð ~e2TðJ a ~e

1Þþ ~e1T ~f
2 Þ dzþ

Z b

a
e1I f

2
I dzþ

Z b

a
e2I e

1
2 dz

þððcþcÞe11Þja;bTΣ f 2∂ þe2∂
TΣ ðe12Þja;b ð2:42Þ

Remind that, from the definition of DI , the variables ~e1 and eI1

may be chosen freely.
Firstly, let us choose e11 ¼ 0, e12 ¼ 0, e1I ¼ 0 and e1c ¼ 0. Then the

bilinear product reduces to: P ¼ R b
a e1c f

2
c dz and the condition that

it vanishes for any ec1 implies the relation f 2c ¼ 0. By symmetry one

obtains f 2c ¼ 0.
Secondly, let us choose e12 ¼ 0 , e1I ¼ 0 and e11ðaÞ ¼ e12ðbÞ ¼ 0, then,

using the definition of f2 of the constitutive relations of DI and
(2.36) with zero boundary conditions, the bilinear product becomes

P ¼
Z b

a
ðe22ð�dne11Þþe11f

2
1Þ dz

¼
Z b

a
e11ð�de22þ f 21Þ dz ð2:43Þ

The condition that P vanishes for any e11 hence implies that

f 21 ¼ de22 .
Thirdly, let us choose e11 ¼ 0 , e1I ¼ 0 and e11ðaÞ ¼ e12ðbÞ ¼ 0, then,

using the definition of f1 of the constitutive relations of DI and
(2.36) with zero boundary conditions, the bilinear product becomes

P ¼
Z b

a
ðe21ðde12Þþe12f

2
2þe12e

2
I Þ dz

¼
Z b

a
e12ðdne21þ f 22þe2I Þ dz ð2:44Þ
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The condition that P vanishes for any e12 hence implies that

f 22 ¼ �dne21�e2I .

Fourthly, let us choose ~e11 ¼ 0 , ~e12 ¼ 0, then, using the definition of
fI of the constitutive relations of DI , the bilinear product becomes

P ¼
Z b

a
ð�e1I e

2
2þ f 2I e

1
I Þ dz

¼
Z b

a
e1I ð�e22þ f 2I Þ dz ð2:45Þ

The condition that P vanishes for any eI1 hence implies that f 2I ¼ e22.
Fifth, let us choose e1I ¼ 0, then, using the constitutive relations

of DI , the previously established relations on f 21, f
2
2 and f I

2, the
relation (2.36), the bilinear product becomes

P ¼
Z b

a
ðe21de12þe22ð�dnÞe11Þ dzþ

Z b

a
ðe11de22þe12ð�dnÞe21Þ dz

þððcþcÞe11Þja;bTΣ f 2∂ þe2∂
TΣ ðe12Þja;b

¼ �½ðcþcÞe11e22�ba�½ðcþcÞe21e12�ba
�ððcþcÞe11Þja;bTΣ f 2∂ þe2∂

TΣ ðe12Þja;b

The condition that P vanishes for any e11ðaÞ and e12ðbÞ hence implies

the boundary port variables and
f 2∂
e2∂

 !
¼ 0

ðcþcÞ
1
0

� �
e21
e22

� �
ja;b .

Comparing the constitutive relations of the Dirac structure DI

defined in (3.12) with the augmented Hamiltonian system (2.31),
one may easily see that it may be endowed with a port Hamilto-
nian structure.

Corollary 5. The augmented Hamiltonian systems (2.31) with the
conjugated flow variable f I ¼ e2 may be defined as a boundary port
Hamiltonian system with respect to the Dirac structure DI by

∂t ~x
f I
f ∂

0
B@

1
CA;

δ ~xHð ~xÞ
eI
e∂

0
B@

1
CA

0
B@

1
CAADI

where the state vector ~x, defined in (2.29), the Hamiltonian Hð ~xÞ,
defined in (2.28), the pair of port variables ðf I ; eIÞ are associated with
the interface and the pair of port variables ðf ∂; e∂Þ is associated with
the boundary of the spatial domain ½a; b�.

As a consequence of the port Hamiltonian structure, the
augmented Hamiltonian system (2.31) with the conjugated flow
variable f I ¼ e2 satisfies the following power balance equation:

d
dt

HðxÞ ¼ eT∂Σf ∂þ
Z b

a
eTI f I dz ð2:46Þ

Furthermore, if the Hamiltonians Hþ ðxÞ and Hþ ðxÞ are bounded
from below,the augmented system has passivity properties.
Indeed, although the Hamiltonian of the augmented system
(2.31) is linear in the two color functions, they are invariants of
the system hence, restricted to the invariant submanifold of
invariance, it is indeed bounded from below.

Observe that the interface port variables ðf I ; eIÞ are distributed
variables on the complete domain ½a; b�. If the color functions are
the characteristic functions of the subdomains separated by the
interface, then the power inflow at the interface appearing in
the power balance equation (2.46) depends only on the values of
the effort variables at the interfaceZ b

a
eTI f I dz¼ �e1ð0� Þe2ð0þ Þþe1ð0� Þe2ð0þ Þ

involving the same variables as in (2.11).

3. Port Hamiltonian systems coupled through a moving
interface

In this section we shall consider the case when the interface is
moving. We shall denote by lðtÞ the time-varying position of the

interface in the interval �a; b½ and its velocity by _lðtÞ ¼ dl=dt. In a first
instance we shall show how the formulation as a port Hamiltonian
systems of Corollary 5 may be extended to a moving interface. To this

endwe shall consider the velocity _lðtÞ of displacement of the interface as
an input. In the first instance we shall formulate the balance
equations of the extended state variables ~x defined in (2.29), for
the case of a moving interface. In the second instance we shall show
that they lead to a Port Hamiltonian system obtained by completing
the system of Corollary 5 with an input relation and a conjugated

port variable associated to _lðtÞ. We conclude with some remarks on
the interface relations and treat the simple example of two gas in
interaction through a piston.

3.1. Balance equations with moving interface

For a time-varying position lðtÞ of the interface the spatial
domains of the two subsystems are the intervals ½a; lðtÞ½ and �lðtÞ; b�.
The two color functions, the characteristic functions of the
domains, depend now on the position of the interface

clðtÞðz; tÞ ¼
1 8zA ½a; lðtÞ½
0 8zA ½lðtÞ; b�

(
ð3:1Þ

and

clðtÞðz; tÞ ¼
1 8zA �lðtÞ; b�
0 8zA ½a; lðtÞ�

(
ð3:2Þ

These color functions are the solutions of the transport equa-

tions depending on the velocity _lðtÞ of the interface

∂tcðz; tÞ ¼ �_lðtÞ∂zcðz; tÞ and ∂tcðz; tÞ ¼ � _lðtÞ∂zcðz; tÞ ð3:3Þ
with initial conditions

cðz; 0Þ ¼ clð0Þðz; tÞ and cðz; 0Þ ¼ clð0Þðz; tÞ ð3:4Þ

and compatible boundary conditions.
The state variables, the flux variables and the energy function

may be defined according to the definitions (2.16), (2.18) and
(2.28), respectively. We assume again that the interface relations
(2.12) and (2.13) hold. Now due to the moving interface, the
balance equations on intervals ½a′; b′� with ara′o lðtÞob′rb
containing the interface will include an additional term, depend-

ing on the velocity _lðtÞ of the interface.
The balance equation of the variable x1 becomes

d
dt

Z b′

a′
x1ðz; tÞ dz¼

d
dt

Z lðtÞ

a′
x1ðz; tÞ dzþ

d
dt

Z b′

lðtÞ
x1ðz; tÞ dz

¼
Z lðtÞ

a′
∂tx1ðz; tÞ dzþ

Z b′

lðtÞ
∂tx1ðz; tÞ dz

þ_lðtÞ½x�
1 ðlðtÞ; tÞ�xþ

1 ðlðtÞ; tÞ�

¼
Z b′

a′
d0N 1ðx; cl; clÞ dzþ _lðtÞ½x�

1 ðlðtÞ; tÞ�xþ
1 ðlðtÞ; tÞ�

¼ �N 1ða′; tÞþN 1ðb′; tÞþ _lðtÞ½x�
1 ðlðtÞ; tÞ�xþ

1 ðlðtÞ; tÞ�
¼ �e2ða′; tÞþe2ðb′; tÞþ _lðtÞ½x�

1 ðlðtÞ; tÞ�xþ
1 ðlðtÞ; tÞ� ð3:5Þ

and its local formulation becomes

∂tx1 ¼ d0N 1ðx; cl; clÞþ _lðtÞ½c x1∂zcþc x1∂zc� ð3:6Þ
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For the state variable x2 becomes, in a similar way as above

d
dt

Z b′

a′
x2ðz; tÞ ¼

Z b′

a′
�dn

0N 2ðx; cl; clÞ�eI

 �

dz

þ _lðtÞ½x�
1 ðlðtÞ; tÞ�xþ

1 ðlðtÞ; tÞ�

¼
Z b′

a′
fðd0�½ð∂z clÞ

�ð∂z clÞ�ÞN 2ðx; cl; clÞ�eIg dz
þ _lðtÞ½x�

1 ðlðtÞ; tÞ�xþ
1 ðlðtÞ; tÞ�

¼ �N �
2 ða′; tÞþN þ

2 ðb′; tÞþeIðlðtÞÞ
þ _lðtÞ½x�

1 ðlðtÞ; tÞ�xþ
1 ðlðtÞ; tÞ�

¼ �e1ða′; tÞþe1ðb′; tÞ�eIðlðtÞÞ
þ _lðtÞ½x�

2 ðlðtÞ; tÞ�xþ
2 ðlðtÞ; tÞ� ð3:7Þ

and its local formulation becomes

∂tx1 ¼ �dn

0N 2ðx; cl; clÞ�eIþ _lðtÞ½c x1∂zcþc x1∂zc� ð3:8Þ

3.2. Port Hamiltonian formulation

The four balance equations (3.3), (3.6) and (3.8) may be
recognized as the augmented Hamiltonian formulation (2.31) of
the system of two conservation laws with fixed interface which is
completed with an additive term proportional the velocity. They
may then be written in state space form

∂t

x

c
c

0
B@

1
CA¼J a

δxHðx; c; cÞ
δcHðx; c; cÞ
δcHðx; c; cÞ

0
B@

1
CAþ IeIþ_lðtÞ

cx cx

�1 0
0 �1

0
B@

1
CA∂z

c

c

� �
ð3:9Þ

with I defined in (2.32).

This defines an input map associated with the input _lðtÞ,
velocity of the interface, as follows:

Gðx; c; cÞ ¼
cx cx

�1 0
0 �1

0
B@

1
CA∂z

c

c

� �
ð3:10Þ

One may define then the conjugated output el by

el ¼
Z b

a
δ ~xHð ~xÞT Gðx; c; cÞ dz

which may also be defined as the pairing

el ¼ 〈GðTx; c; cÞj; δ ~xHð ~xÞ〉¼
Z b

a
δ ~xHð ~xÞT Gðx; c; cÞ dz ð3:11Þ

This leads to define a Dirac structure associated for the system of
conservation laws with a moving interface as follows.

Proposition 6. The set of relations DM associated with a system of
two conservation laws defined with the variables x1

x2

� �
on the spatial

domain ½a; b� 3 z and an interface moving with velocity _l which
imposes the continuity of the effort variable e2 and allows for the
discontinuity of the effort variable e1 which is defined by

DM ¼

~f

f I
el
f ∂

0
BBBB@

1
CCCCA;

~e

eI
_l

e∂

0
BBB@

1
CCCA

0
BBBB@

1
CCCCAAF � E=

8>>>><
>>>>:

~f

f I
�el

0
B@

1
CA¼

J a I Gðx; c; cÞ
� IT 0 0

�〈GT ðx; c; cÞj 0 0

0
B@

1
CA

~e

eI
_l

0
B@

1
CA

and
f ∂
e∂

 !
¼

0 1
ðcþcÞ 0

 !
e1
e2

 !
a;b

9>>>>>=
>>>>>;

ð3:12Þ

with the flow variable ~f ¼ ðf 1; f 2; f c; f c ÞT and the effort variable
~e ¼ ðe1; e2; ec; ec ÞT associated with the extended state (2.29), the
differential operator J a defined in (2.33), the operators d, resp. dn

defined in (2.34), resp. (2.35), the column vector I defined in (2.32),
the input map G defined in (3.10) and its adjoint 〈GT j in (3.11) and
bond space B¼F � E with F ¼ E ¼ L2ðða; bÞ;RÞ5 � R� R9 endowed
with the pairingh ~f

f I
el
f ∂

0
BBBB@

1
CCCCA;

~e

eI
_l

e∂

0
BBB@

1
CCCAi¼

Z b

a
~eT ~f dzþ

Z b

a
eI

Tf I dzþeT∂Σf ∂�el_l ð3:13Þ

with Σ defined in (2.9) defines a Dirac structure.

Proof. Let us first show the isotropy condition DM �D?
M .

Denote

f̂ ¼

~f

f I
el
f ∂

0
BBBB@

1
CCCCA

and then pairing (3.13) by 〈ê; f̂ 〉. Then the isotropy condition is
written as

〈〈ðf̂ 1; ê1Þ; ðf̂ 2; ê2Þ〉〉¼ 〈ê1; f̂
2
〉þ〈ê2; f̂

1
〉¼ 0

8ððf̂ 1; ê1Þ; ðf̂ 2; ê2ÞÞ �DM

with respect to the bilinear product associated with the pairing
(3.13) or in an equivalent way

〈ê; f̂ 〉¼ 0 8ðf̂ ; êÞADM

what is checked by computing the pairing

〈ê; f̂ 〉¼
Z b

a
~eT ~f dzþ

Z b

a
eI

Tf I dzþeT∂Σf ∂�el_l

¼
Z b

a
~eTðJ a ~eþ IeIþG_lÞ dzþ

Z b

a
eI

Tð� IT ~eÞ dzþe∂TΣ f ∂

�
Z b

a
~eTG dz

 !
_l

¼
Z b

a
eI

TIT ~e dzþ
Z b

a
eI

Tð� IT ~eÞ dz
 !

þ
Z b

a
~eTJ a ~e dzþe∂TΣ f ∂

 !

þ
Z b

a
~eTG_l dz�

Z b

a
~eTG dz

 !
_l ¼ 0 ð3:14Þ

Let us now prove the co-isotropy condition D?
M �DM . This

amounts to proving that if ðf̂ 2; ê2ÞAB satisfies 8ðf̂ 1; ê1ÞADM;

〈〈ðf̂ 1; ê1Þ; ðf̂ 2; ê2Þ〉〉¼ 0 then ðf̂ 2; ê2ÞADM . Therefore let us com-

pute the bilinear product (3.14), assuming that ðf̂ 1; ê1ÞADM .

Pe ¼
Z b

a
ð ~e2TðJ a ~e

1þ Ie1I þG_l
1Þþ ~e1T ~f

2 Þ dz

þ
Z b

a
e1I f

2
I dzþ

Z b

a
e2I e

1
2 dz ð3:15Þ

þððcþcÞe11Þja;bTΣ f 2∂ þe2∂
TΣ ðe12Þja;b ð3:16Þ
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þ
Z b

a
½ð∂zcÞe1c þð∂zcÞe1c �f

2
c dzþ

Z b

a
e2c ð�_l

1Þ dz ð3:17Þ

�
Z b

a
GT ðx; c; cÞ ~e1 dz

 !
_l
2�e2l

_l
1 ð3:18Þ

Remind that, from the definition of DM , the variables ~e1 , eI1 and
_l
1
may be chosen freely.
In a first instance, choose _l

1 ¼ 0. Then the power product becomes

Pe ¼
Z b

a
ð ~e2TðJ a ~e

1þ Ie1I Þþ ~e1T ~f
2 Þ dzþ

Z b

a
e1I f

2
I dzþ

Z b

a
e2I e

1
2 dz

ð3:19Þ

þððcþcÞe11Þja;bTΣ f 2∂ þe2∂
TΣ ðe12Þja;b ð3:20Þ

þ
Z b

a
½ð∂zcÞe1c þð∂zcÞe1c �f

2
c dz ð3:21Þ

�
Z b

a
GT ðx; c; cÞ ~e1 dz

 !
_l
2 ð3:22Þ

Then, firstly, let us choose e11 ¼ 0, e12 ¼ 0, e1I ¼ 0 and e1c ¼ 0. Then,
the bilinear product reduces to

Pe ¼
Z b

a
e1c f

2
c dz�

Z b

a
�∂zc e1c dz

 !
_l
2 ¼

Z b

a
ðf 2c þ_l

2
∂zcÞe1c dz

and the condition that it vanishes for any ec1 implies the relation
f 2c þ_l

2
∂zc¼ 0.

By symmetry one obtains f 2c þ_l
2
∂zc ¼ 0.

Secondly, let us choose e12 ¼ 0 , e1I ¼ 0 and e11ðaÞ ¼ e12ðbÞ ¼ 0, then,
using the preceding equalities, the definition of f2 of the constitu-
tive relations of DM and (2.36) with zero boundary conditions, the
bilinear product becomes

Pe ¼
Z b

a
ðe22ð�dne11Þþe11f

2
1Þ dz�

Z b

a
ðcx1∂zcþcx1∂zcÞe11 dz

 !
_l
2

¼
Z b

a
e11ð�de22þ f 21�ðcx1∂zcþcx1∂zcÞÞ dz ð3:23Þ

The condition that Pe vanishes for any e11 hence implies that
f 21 ¼ de22þðcx1∂zcþcx1∂zcÞ.
Thirdly, let us choose e11 ¼ 0, e1I ¼ 0 and e11ðaÞ ¼ e12ðbÞ ¼ 0, then,

using the preceding derived equalities and the definition of f1 of
the constitutive relations of DM and (2.36) with zero boundary
conditions, the bilinear product becomes

Pe ¼
Z b

a
ðe21ðde12Þþe12f

2
2þe12e

2
I Þ dz�

Z b

a
ðcx2∂zcþcx2∂zcÞe12 dz

 !
_l
2

¼
Z b

a
e12ðdne21þ f 22þe2I �ðcx2∂zcþcx2∂zcÞ_l

2Þ dz ð3:24Þ

The condition that Pe vanishes for any e12 hence implies that
f 22 ¼ �dne21�e2I þðcx2∂zcþcx2∂zcÞ_l

2
.

Fourthly, let us choose ~e11 ¼ 0, ~e12 ¼ 0, then, using the definition of
fI of the constitutive relations of DM , the bilinear product becomes

Pe ¼
Z b

a
ð�e1I e

2
2þ f 2I e

1
I Þ dz

¼
Z b

a
e1I ð�e22þ f 2I Þ dz ð3:25Þ

The condition that Pe vanishes for any eI1 hence implies that
f 2I ¼ e22.
Fifth, let us choose e1I ¼ 0, then, using the constitutive relations

of DI , the previously established relations on f 21, f
2
2 and fI2, the

relation (2.36), the bilinear product becomes

P ¼
Z b

a
ðe21de12þe22ð�dnÞe11Þ dzþ

Z b

a
ðe11de22þe12ð�dnÞe21Þ dz

þððcþcÞe11Þja;bTΣ f 2∂ þe2∂
TΣ ðe12Þja;b

¼ �½ðcþcÞe11e22�ba�½ðcþcÞe21e12�baððcþcÞe11Þja;bTΣ f 2∂ þe2∂
TΣ ðe12Þja;b

The condition that Pe vanishes for any e11ðaÞ and e12ðbÞ hence
implies

f 2∂
e2∂

 !
¼

0 1
ðcþcÞ 0

 !
e21
e22

 !
a;b

:

In a second instance, choose _l
1
a0. Then, using the previously

derived equalities, the power product becomes

Pe ¼
Z b

a
ð ~e2TG_l1Þ dzþð�e2l

_l
1Þ

¼
Z b

a
~e2TG dz�e2l

 !
_l
1 ð3:26Þ

The condition that Pe vanishes for any _l
1

hence implies
e2l ¼

R b
a GT ~e2 dz.

The port-Hamiltonian formulation of the system of two con-

servation laws with a moving interface with velocity _l may be
formulated as a port-Hamiltonian system.

Corollary 7. The augmented Hamiltonian systems (3.9) with the
conjugated interface flow variable f I ¼ e2 and conjugated variable el
to the interface velocity, defined in (3.11), may be defined as a
boundary port-Hamiltonian system with respect to the Dirac struc-
ture DM by

∂t ~x
f I
el
f ∂

0
BBBB@

1
CCCCA;

δ ~xH
eI
_l

e∂

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCAADM ð3:27Þ

where the state vector ~x, defined in (2.29), the Hamiltonian Hð ~xÞ,
defined in (2.28), the pair of port variables ðf I ; eIÞ at the interface, the
pair of port variables ð_l; elÞ are associated with the velocity of the
interface and the pair of port variables ðf ∂; e∂Þ is associated with the
boundary of the spatial domain ½a; b�.

Computing the balance equation for the Hamiltonian we find

d
dt

HðxÞ ¼ e∂Σf ∂þ
Z b

a
eTI f I dzþ _lel ð3:28Þ

It may be observed that, when restricting to the particular
solution of the color functions (3.2) obtained with initial condi-
tions (3.4), one can relate these port variables to interfacial effort
and flux variables in a similar way as for a fixed interface. In this
case the balance equation of the Hamiltonian is given by

dH
dt

¼ e∂Σf ∂þe1ðl� Þe2ðlþ Þ�e1ðl� Þe2ðlþ Þ� _lel

with output conjugated to the velocity of the interface being the
discontinuity of energy density at the interface

el ¼ ð�H� ðlÞþHþ ðlÞÞ

3.3. Model of the interface's displacement

In the preceding section we have defined the dynamic model of
a system of two conservation laws coupled by a moving interface
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with velocity _l considered as an input variable and the interface
relations (2.12) and (2.13). The port Hamiltonian model with the
moving interface admits as port variables, the port variables ðf I ; eIÞ
associated with the flux variables at the interface and the port

variables ð_l; elÞ associated with the displacement of the interface.
In this section we shall discuss possible closure relations which
could be imposed of these two pairs of port variables at the
interface and illustrate it on a very simple example: two gases
with a piston at the interface.

In a first instance one should observe that the dynamics of
displacement of the interface is necessarily finite-dimensional
while the port variables ðf I ; eIÞ are distributed. Coming back to
the motivating example of a thin interface, that is located at some
point lðtÞ which was the departure for the definition of the model
in the Section 3.1, the port variables ðf I ; eIÞ may be related to a
finite-dimensional pair of variables ðϕI ; εIÞAR2 with the following
adjoint relations:

ϕI

eI

 !
¼

R b
a δðz� lÞf I dz
εIδðz� lÞ

 !
ð3:29Þ

which preserves the power product ϕIεI ¼
R b
a eIf I dz.

It should be noted that one could also define a thick interface
by choosing another kernel than δðz� lÞ, with positive values and
finite support.

In a second instance, one has to complete the interface relation
with the dynamics of the position of the interface lðtÞ for instance
in terms of a port Hamiltonian system with state variables

including lðtÞ and the port variables ðϕI ; εIÞ and ð_l; elÞ. In this case
by interconnection of port Hamiltonian systems through a Dirac
structure one may conclude that the complete system is again port
Hamiltonian and use its properties for the proof of well-posedness
and passivity-based control design.

Example 8. Let us conclude this paragraph with the example of
two isentropic gases (modeled by a systems of two boundary port
Hamiltonian systems [24]) coupled at their interface by some piston
in motion. The port Hamiltonian model of the gases is given
precisely by Proposition 3 with state variables being the specific
volume x1ðt; zÞ ¼ vðt; zÞ, the velocity x2ðt; zÞ ¼ vðt; zÞ, Hamiltonian is
the sum of the internal energy density UðvÞ and the kinetic energy
density Hðv; vÞ ¼ UðvÞþv2=2. The variational derivative of the
Hamiltonian is then

δvH
δvH

 !
¼

e1
e2

 !
¼ �pðvÞ

v

� �

where pðvÞ ¼ �δvUðvÞ is the pressure. The interface relation (2.12)
corresponds to the continuity of the effort variable e2 ¼ v at the
interface, which is the usual hypothesis that there is no cavitation
at the piston and that the velocities of the fluids on both sides of
the piston are equal to the velocity of the piston. And the interface
relation (2.13) corresponds to the balance of forces exerted on the
piston by the pressures e1 ¼ �pðvÞ of the gases from both gases
and the external force fI.
The system of the two gases with a moving interface is then

formulated by Corollary 7 with the color functions being the
characteristic functions of each subdomain. As the piston is
considered as a thin interface, we use the relation (3.29). In order
to complete the interface relations we shall assume that the piston
has no mass but is subject to friction with coefficient ν and an
linear elastic force with stiffness k. In this case the dynamics of the
piston is defined as a simple integrator

dl
dt

¼ϕI ¼ v

and the conjugated effort variable is the sum of all forces applying
on the piston

εi ¼ �kl�νϕI

It may be interpreted as a finite-dimensional port Hamiltonian
system with state variable l, structure matrix being zero, Hamilto-
nian function 1

2 kl
2 port-variables ðϕI ; εIÞ and dissipative term.

Finally the model has to be coupled with the pair of port variables
ð_l; elÞ. One relation is trivial

_l ¼ϕI ¼ v

The second one is less trivial and involves the effort variable el
which is, when the color functions are the characteristic functions
of both subdomains, the difference of the Hamiltonian density
function at the interface el ¼ ð�H� ðlÞþHþ ðlÞÞ. The most simple
way of defining some relation is to impose the continuity of the
Hamiltonian density (which plays then the role of a privileged
variable) which indeed completes the boundary conditions at the
interface

el ¼ 0

As a consequence using the total energy of the conservation laws
and the interface model Htotðv; v; lÞ ¼

R b
a ðUðvÞþv2=2Þ dzþ 1

2 kl
2 one

obtains the power balance equation

dHtot

dt
¼ �νv2�v� ðaÞp� ðvÞðaÞþvþ ðbÞpþ ðvÞðbÞ

4. Conclusion

In this paper we have suggested port Hamiltonian formulation
of a system of two conservation laws (on a 1-dimensional spatial
domain) coupled by a moving interface. We have firstly augmen-
ted the system of conservation laws with two transport equations
of the characteristic functions of the subdomains defined by the
interface. Then we have derived the port Hamiltonian formulation
of this augmented system with, in addition to the boundary port
variables at the boundary of the total domain, two pairs of port-
variables associated with the interface. The first pair corresponds
to a particular choice of interface relation corresponding to a
continuity and a balance equation on the flux variables at the
interface and the second pair is defined by the velocity of interface
and its conjugated variable. Finally we have illustrated this model
with the example of two gases coupled by a moving piston.

This is the first step towards considering the coupling through
an interface of Hamiltonian systems composed of an arbitrary
number of conservation laws. However the most interesting
feature of this formulation is that it makes explicit the pairs of
conjugated variables needed to express the interface relations
when derived from a port Hamiltonian formulation. This might be
a powerful insight in the various suggested interface relations in
the literature and toward a passivity-based definition and classi-
fication of these interface relations.

Finally this port Hamiltonian formulation might open the way
to the analysis of the well-posedness of these systems (in the
continuation of [15,27]) as well as their passivity-based control
which will be the aim of future work.
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