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Country distancing increase reveals the
effectiveness of travel restrictions in stopping
COVID-19 transmission
Lu Zhong1, Mamadou Diagne 1✉, Weiping Wang2 & Jianxi Gao 3,4✉

Despite a number of successful approaches in predicting the spatiotemporal patterns of the

novel coronavirus (COVID-19) pandemic and quantifying the effectiveness of non-

pharmaceutical interventions starting from data about the initial outbreak location, we lack

an intrinsic understanding as outbreak locations shift and evolve. Here, we fill this gap by

developing a country distance approach to capture the pandemic’s propagation backbone

tree from a complex airline network with multiple and evolving outbreak locations. We apply

this approach, which is analogous to the effective resistance in series and parallel circuits, to

examine countries’ closeness regarding disease spreading and evaluate the effectiveness of

travel restrictions on delaying infections. In particular, we find that 63.2% of travel restric-

tions implemented as of 1 June 2020 are ineffective. The remaining percentage postponed

the disease arrival time by 18.56 days per geographical area and resulted in a total reduction

of 13,186,045 infected cases. Our approach enables us to design optimized and coordinated

travel restrictions to extend the delay in arrival time and further reduce more infected cases

while preserving air travel.
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G iven 41,570,883 confirmed cases of COVID-19 and
1,134,940 deaths worldwide as of 23 October 20201–3, the
need for world to deploy non-pharmaceutical interven-

tions prior to comprehensive consideration is urgent4–6. Today’s
high population density and the high volume, speed, and non-
locality of human mobility provide perfect conditions for an
epidemic to spread7–10 and simultaneously raise the challenges
related to the development of non-pharmaceutical intervention
strategies on the timescale that modern diseases spread11–13.
Although the practice of quarantine and social distancing pro-
tocols can drastically reduce the virus propagation locally6,14–16,
the global COVDI-19 pandemic patterns are shaped by the global
mobility network (GMN), which determines when and where the
disease arrives globally17,18. Consequently, the straightforward
way to diminish the international importation of COVID-19
involves imposing radical travel restrictions (i.e., entry bans,
global travel bans, and lockdowns)19–21, which reduce the entry
of airline passengers into a country. According to available data as
of 1 June 2020, 187 geographical areas imposed the entry bans,
111 geographical regions imposed global travel bans, and 38
geographical areas imposed the full lockdowns to prevent their
citizens and tourists from traveling overseas5,22. However,
researchers demonstrated that these travel restrictions were only
effective at the beginning of the outbreak23. When such inter-
ventions fail to control the initial outbreak, they instead disrupt
the healthcare aid and support, business, and cause extensive and
profound social and economic damage24,25. Therefore, it is cru-
cial to assess and impose effective travel restrictions to avoid
unnecessary and costly responses to COVID-19 from the side of
governments26.

Measuring the effectiveness of travel restrictions often relies on
the specific epidemic models4,27–30, which require accurate esti-
mation of the disease’s epidemiological parameters, such as the
basic reproductive number (R0). However, the parameter esti-
mations are often unreliable due to the daily changes in under-
reported cases and various errors arising from the lack of
diagnosis tests11,31,32. Furthermore, these models are difficult to
calibrate due to incomplete information (i.e., partial network
topology33 or unknown dynamics19,34). Overall, it is unclear how
much detail is required to achieve a certain level of predictive
accuracy. Human mobility plays a significant role in under-
standing hidden spatiotemporal spreading patterns35 and enables
us to predict the arrival time17,36,37 and number of infected
cases38. In particular, effective distance, a method introduced by
Brockmann and Helbing17, measures the mobility from the initial
outbreak location (OL) to the target geographical area by dis-
carding other redundant connections. This method allows to
predict the arrival time and epidemic wavefront without knowing
the epidemiological parameters and has already been demon-
strated useful in the 2009 H1N1 pandemic and the 2003 SARS
epidemic. Additionally, the initial OL’s mobility outflow is a vital
predictor for the log-transformed cumulative infections in the
destination locations38,39, and was validated by the Wuhan’s
outflow to each prefecture in mainland China in the early stage of
the COVID-19 pandemic.

Here, by simulating the spread of disease with the meta-
population susceptible–infected–removed (SIR) model, we show
that the effective distance method is successful in predicting the
evolution of the pandemic when Mainland China is the only OL.
As shown in Fig. 1a, b, the effective distance accurately estimates
countries’ arrival times with an R-squared value R2= 0.87 and
log-transformed cumulative infected cases with R2= 0.88. How-
ever, when multiple OLs appeared, effective distance weakly
correlated with disease dynamics with R2 ≤ 0.4 (see in Fig. 1c, d).
We argue that the observed underperformance is due to the
effective distance’s underlying assumption of a single OL, which

neglects other OLs’ potential in exporting viruses to other areas
through air travel. The presence of varying OLs is essentially
related to the variability in countries’ health responses to COVID-
19. In fact, the time-varying nature of OLs poses challenges in
capturing the ongoing pandemic’s spatiotemporal pattern and
evaluating the effects of travel restrictions. This feature prompts
new mathematical tools to advance the understanding of global
disease dynamics under unprecedented non-pharmaceutical
interventions. To address this gap, we propose a country dis-
tancing method that captures global disease dynamics when OLs
evolve. Our approach takes inspiration from the connection laws
in electric circuits with resistances in series and parallel config-
urations. We apply this approach to quantify the effectiveness and
efficiency of existing travel restrictions and design optimized and
coordinated travel restrictions to maximize their impact in
slowing infections.

Results
Mathematical framework of country distancing. We tested the
international spread of the disease on the GMN (see Supple-
mentary Table 1). The GMN, which is provided by the Official
Aviation Guide, is presented by a matrix of airline passenger
influx F among 250 geographical areas, representing countries,
dependent territories, and special areas of geographical interest.
Here, Fmn (Fmn∈ F) expresses the airline passenger influx from
area n to the area m. For a single OL, the diseases may propagate
to a geographical area through distinct paths, the shortest of
which predicts the infection to the destination17. For area n and
its connected area m, their effective distance is
dmjn ¼ 1� log Pmn, indicating that a larger fraction of air travel

Pmn (Pmn ¼ Fmn
∑kFkn

) means a smaller distance, and vice versa. Then,
for an arbitrary area m that can be reached by n through a path τ,
the effective distance is the sum of effective lengths along the links
of the shortest path, dmjn ¼ min

τ
∑ði;jÞ2τdjji. We call this series

connection law (see Fig. 2a) because it is analogous to the effective
resistance in series circuits defined as R=∑iRi, where Ri is the
resistance that is connected along a chain.

The number of OLs may grow or shrink, which escalates or
diminishes the importation risk for the other geographical areas
and simultaneously increases/reduces geographical areas’ distance
to the risky sources, respectively. Using the meta-population SIR
model, the disease evolution on this model becomes segmented
according to the presence of OLs (see “Methods” and Supple-
mentary Note 2). Motivated by the effective distance17 and
propagation processes simulated by the meta-population SIR
model with multiple OLs, we derive a formula that examines
areas’ closeness to all existing OLs through the parallel
connection law. For example, the disease propagates from two
OLs, n and c, to the destination geographical area, m, with
effective distances dm∣n, and dm∣c, respectively (see Fig. 2b). The
overall likelihood of transmitting from both OLs satisfies
edmj n;cf g / 1

1

e
dmjnþ

1

e
dmjc

. This process is similar to the effective

resistance in parallel circuits that R ¼ 1
1
Rn
þ 1

Rc

. For the general case,

we derive the series and parallel connection law for global disease
transmission and formulate it as country distancing (see
Supplementary Note 3):

DmjNI
¼ log

M
∑ni2NI

1
e
dmjni

ð1Þ

where NI is the OL set and M is the total number of geographical
areas (M= 250). Note that a large set of OLs may lead to small
country distancing, and a larger portion of passenger influx leads
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Fig. 1 Global disease dynamics cannot be predicted by effective distance when the outbreak locations (OLs) are evolving. a, b depict the global disease
dynamics, i.e., arrival times Tm and log-transformed infected cases Im(t) (e.g., t= 50) as functions of effective distance from the initial OL, respectively.
However, when the single OL evolves to multiple OLs (e.g., five OLs), see c and d, the effective distance from the initial OL fails to correlate with arrival
times Tm and log-transformed infected cases Im(t), with an R-squared value (R2) < 0.4. Circles represent geographical areas, and those belonging to the
same continent are presented in the same color. Both arrival time and infected cases are obtained from the meta-population susceptible–infected–removed
model, with epidemiological parameters provided by the literature55,56.

Fig. 2 Global disease dynamics using country distancing when the outbreak locations (OLs) are evolving. By deriving the series and parallel connection
law (a, b) for global disease transmission, we derive the country distancing method to capture the global disease spread dynamics, i.e., the arrival times and
new infected cases. Rn and Rc represent the resistances in the circuit. Nodes n, c, and m represent the geographical areas and the directed links between the
nodes represent the traffic flow. The disease propagates from one OL (e.g., n) to destination m, on par with series connection law; whereas the disease
propagates from multiple OLs (e.g., n and c) to destination m, on par with parallel connection law. c, d separately show the R-squared values (R2) for
evaluating global disease dynamics versus country distancing and effective distance. Country distancing correlates strongly with remaining arrival times
Tm(t) (c) and log-transformed new infected cases Im(t)− Im(t− 1) (d) when multiple OLs are present. The R2 values for country distancing keep above than
0.7 although OLs are shifting, whereas the R2 values for effective distance decline sharply given that multiple OLs emerge. e, f are the slopes of linear
correlations for c and d, representing the speed of arrival times and speed of infection. The shaded areas are the 95% confidence intervals for the speeds.
Outbreak locations are defined as the geographic areas whose active confirmed case greater than 0.01% population. On 1 June 2020, 146 geographical
areas are OLs. Similar to Fig. 1, both arrival time and infected cases are obtained from the meta-population susceptible–infected–removed model.
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to a smaller effective distance and may further lead to smaller
country distancing.

Global disease dynamics for the evolving outbreak locations.
Two fundamental properties describe the main spread dynamics
of the COVID-19 pandemic: the arrival time (Tm), i.e., the date of
the first confirmed case, and the cumulative infected cases [Im(t)]
in a geographical area m. As numerous undetected, missing,
undiagnosed, or unreported COVID-19 cases result in biased
arrival times and infected cases in the collected real-world
dataset31,32,40, we simulate the spread of COVID-19 by adopting
the meta-population SIR model41 in the segmented time interval
according to the presence of different OL sets. The model is
validated by (1) defining the OL NI(t) as the geographic areas
having greater than 0.01% of the infected population at time t; (2)
ratifying the strengths for entry bans, global travel ban, and
lockdown in 90% effective in limiting travels according to the
International Civil Aviation Organization42; and (3) assuming
domestic trips alter the local infection rate. The simulated data
resemble the arrival times and infected cases within the given
ranges as of 1 June 2020 (see Supplementary Table 3). We con-
ducted extensive sensitivity analysis and model validation using
different combinations of parameters, as shown in Supplementary
Note 2.

Evidence shows that human mobility determines arrival
times12,17,43 and infected cases38 when there is only one OL.
However, these approaches are not suitable for the presence of
multiple OLs because it is unclear how each OL contributes to the
arrival time and infected cases in each geographical area. Our
approach compresses multiple OLs to a single one and calculates
the corresponding effective mobility using the series and parallel
connection law for global disease transmission. As demonstrated
in Fig. 2c, d, country distancing correlates with the simulated
arrival times and the logarithm of the simulated infected cases
with a coefficient of determination R2 > 0.7 regardless of the
number of OLs at time t. In addition, R2 for country distancing is
consistently far above its value for effective distance, which is
≤0.3. For a robustness check, we also test the predictability of
country distancing for different criteria of selecting OLs in
Supplementary Figs. 1–5. All the result indicates that instead of
effective distance, country distancing is an excellent predictor of
global disease dynamics, especially for the evolving OLs. Thus, for
each time t, we formulate functional linear relationships between
country distancing and remaining arrival times Tm(t) [Tm(t)=
Tm− t] and new infected cases Im(t+ 1)− Im(t) as:

TmðtÞ � vðtÞDmjNI ðtÞ
logðImðt þ 1Þ � ImðtÞÞ � uðtÞDmjNI ðtÞ

ð2Þ

where v(t) and u(t) are the slopes (speeds), as shown in Fig. 2e, f,
representing the rates of change of arrival times/infected cases
relative to country distancing. The different OLs and temporal
infection rates exhibit variability in speeds and further estimating
the effectiveness of travel restrictions (see Supplementary Notes 3
and 4).

Status quo of existing travel restrictions. As of 1 June 2020, 625
travel restrictions have been imposed worldwide. An overview of
implemented travel restrictions in given geographical areas is
shown in Fig. 3a. As shown in Supplementary Table 2 and
Supplementary Fig. 6, 184 geographical areas imposed 476 entry
bans from 21 January 2020 to 17 March 2020. These areas that
imposed entry bans deny access to noncitizens at some specific
geographical regions such as mainland China, South Korea,
Japan, Iran, and the Schengen Area. From 11 March 2020, when
approximately half of the countries were infected worldwide,

entry bans were not sufficient to lower the risk of coronavirus
importation from the infected regions44. Consequently, 111
geographical areas imposed the global travel ban to prevent
overseas travelers from entering their areas except for their resi-
dents, and 38 geographical areas imposed full/national lockdowns
to deter people entering and exiting their countries.

Measuring effectiveness and efficiency of travel restrictions
using country distancing. According to the International Civil
Aviation Organization42, 90% of passenger seats were lost in the
second quarter of 2020. As illustrated in Fig. 3b, for the area n
that implemented the travel restrictions (see Eqs. (5)–(7)), (1) the
entry ban reduces the passenger influx from banned areas to n
with strength α= 90%; (2) the global travel ban reduces the
passenger influx from all neighboring areas to enter n with
strength β= 90%; (3) the lockdown reduces the passenger influx
entering/leaving n with strength γ= 90% for full lockdown. In
other words, travel restrictions induce a reduction in passenger
influx, leading to larger country distancing (named country dis-
tancing increase, see Eqs. (8)–(15)) in Fig. 3c. We map the
country distancing increase at each geographic area to the
changes in arrival times (named as arrival time delay (ATD)) and
changes in infected cases (named as infected case reduction
(ICR)) according to the linear relationships in Eq. (2). Given the
slopes of the linear correlations, namely, v(t) and u(t) in Eq. (2),
the effectiveness of travel restrictions in slowing disease dynamics
could be quantified by the world’s average ATD and total ICR
with the loss of air travel caused by them.

Through all existing travel restrictions, 36.3% of passenger
influx is reduced from GMN, the arrival times of the disease in
the world are delayed by 18.56 (95% CI, 15.84–21.28) days on
average, and infected cases are reduced by 13,186,045 (95% CI,
3,992,055–40,148,831) cases. However, ~63.2% of travel restric-
tions are ineffective, resulting in zero country distancing increase.
Figure 4a, b shows the effectiveness and efficiency of the
remaining 36.8% travel restrictions by representing their ATD/
ICR against the cost of losing passenger influx. The means of lost
passenger influx (vertical line) and ATD/ICR (horizontal line)
divide the travel restrictions into four blocks, i.e., effective and
efficient block (top left), effective and inefficient block (top right),
ineffective and efficient block (bottom left), and ineffective and
inefficient block (bottom right). In addition to the lockdowns
imposed by mainland China, the lockdowns imposed by Spain
(@ES), New Zealand (@NZ), and South Africa (@ZA) produce
crucial ATD for the world. Concurrently, lockdowns established
by Italy (@IT) and Spain (@ES) as well as the global travel ban
enforced by Turkey (*TR) carry significant ICR for the world.
However, these extreme travel restrictions also aggravate the loss
of passenger influx. Several travel restrictions, e.g., the entry ban
imposed by the United States (US-CN), Hong Kong (HK-CN),
and Italy (IT-CN) on mainland China produce comparable ATD
or ICR but with considerably less loss of passenger influx.
Moreover, 505 (80.8%) travel restrictions generate <0.01 days of
ATD and <1000 cases of ICR for the world, suggesting the
ineffectiveness of travel restrictions.

Quantification of the impact of travel restrictions through
country distancing increase. Figure 4 indicates that entry bans to
the OLs are most effective and efficient. The areas implementing
such entry bans and their descendants in the shortest path tree
are distant from the OLs. As shown in Fig. 5a, by implementing
an entry ban on mainland China on 31 January 2020, the United
States increased country distancing by 40.96 in total. This means
that the entry ban produces 8.10 days of ATD for the 28 areas,
which are descendants of the United States (shaded area). By
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imposing a global travel ban on 21 January 2020 (see Fig. 5b),
North Korea’s country distancing rises by 2.30 (13.53 days of
ATD, 0 cases of ICR) but induces no country distancing change
for other countries, because North Korea is a leaf node. The
findings suggest that the travel restrictions imposed by the areas
with more descendant areas in the shortest path tree are more
effective in distancing the world from coronavirus importation
risk. The OLs, which are the sources of the shortest path tree,
have the most significant influence. By imposing the national
lockdown on 8 February 2020 (see Fig. 5c), mainland China
increased the country distancing by 522.6 in total. Specifically, the

lockdowns produced 10.81 (95% CI, 9.23–12.39) days of ATD per
geographical area and 6,518,277 (95% CI, 1,948,391–19,955,176)
ICR in total, representing 58.26% of ATD and 49.43% of ICR
generated by all travel restrictions. However, as the number of
OLs grows (multiple OLs), as shown in Fig. 5d–f, the distance to
OLs is reduced. Substantial intervention efforts cause relatively
smaller country distancing increases and fewer health benefits in
delaying infection. For example, see Fig. 5d, e, the entry ban
imposed by the United States to Japan on 1 March 2020 and the
global travel ban imposed by New Zealand on 19 March 2020
both leads to <0.07 ATD and <2000 ICR. The same phenomenon

Fig. 3 Illustration of existing travel restrictions (i.e., entry bans, global travel bans, and lockdowns) until 1 June 2020. a shows geographic areas’
implemented travel restrictions. Each pie in the global map represents the share of entry bans (in red), global travel ban (in orange), and lockdown (in blue)
that the area imposed. For example, New Zealand imposed three entry bans, one global travel ban, and one lockdown, whereas Japan imposed four entry
bans. b illustrates how the entry ban, global travel ban, and lockdown reduce airline passenger influx. When the colored areas (in red, orange, and blue)
enforce the entry ban, the global travel ban, or the lockdown, the passenger influx on corresponding colored links is reduced (dotted links). The outward/
inward arrows indicate restricting travelers exiting/entering. c shows the implementation time of existing travel restrictions versus their induced global
country distancing increase. Each dot represents the travel restriction. Among the marks, for example, “US-CN” represents the entry ban (“-”) imposed by
the United States (US) on mainland China (CN); “*KP” represents the global travel ban (“*”) imposed by North Korea (KP); and “@CN” represents the
lockdown (“@”) imposed by mainland China (CN). For clear visualization, geographical areas are presented by two-letter codes. Please see Supplementary
Table 5 for geographical areas’ two-letter codes. The marginal charts of c show the standardized box plots of travel restrictions’ implementation time and
country distancing increase on the top and right, respectively.
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is observed in Italy, one of the 38 sources in the shortest path tree,
which imposed a national lockdown on 23 March 2020 (see
Fig. 5f). This lockdown led to a 3.75 increase in country distan-
cing. The lockdown also produces 0.007 (95% CI, 0.006–0.008)
days of ATD per geographical area and 13,590 (95% CI,
10,569–17,191) cases of ICR in total, accounting for nearly 0% of
ATD and 0.1% of ICR generated by all travel restrictions. Our
findings indicate that two factors determine the effectiveness of
travel restrictions. One is the geographical areas’ position that
imposed travel restrictions on the shortest path tree; another is
the implementation date. Insufficient consideration of both fac-
tors leads to ineffectiveness and further inefficiency of travel
restrictions.

Geographic areas’ contributions and gains. Geographical areas
implemented different travel restrictions. By integrating the
health benefits of travel restrictions enforced by the same area, we
find that mainland China (CN) has a dominant contribution
followed by Australia (AU), the United States (US), New Zealand
(NZ), the Netherlands (NL), and Russia (RU), as shown in Fig. 6a

(also see Supplementary Fig. 10). This finding suggests that
mainland China is the most influential area in mitigating the
spread of COVID-19. On the other hand, Italy (IT), Germany
(DE), Hong Kong (HK), Turkey (TR), and Taiwan (TW) con-
tribute a great number of ICRs by imposing travel restrictions.
Figure 6b, c shows the gains of ATD and ICR in geographic areas
due to all collected travel restrictions. Note that Tuvalu (TV),
Niue (NU), Lesotho (LS), Tonga (TO), and North Korea (KP),
which were not infected until 1 June 2020, were the areas with the
most ATD, i.e., 125, 73, 73, 71, and 70 days, respectively.
Otherwise, Italy (IT), Hong Kong (HK), Germany (DE), South
Korea (KR), and Taiwan (TW), which are infected at the early
stage of the outbreak, are the areas with the highest ICR, i.e.,
9,781,603, 649,010, 630,612, 298,068, and 210,577 cases,
respectively.

Optimal and coordinated travel restrictions. We find that most
of the existing travel restrictions are ineffective for two reasons:
(1) the travel restrictions are imposed by geographical areas in an
uncoordinated manner out of self-interest, failing to contribute to

Fig. 4 Effectiveness and efficiency of existing travel restrictions. a, b depict existing travel restrictions’ arrival time delay (ATD) and infected case
reduction (ICR) at the cost of losing passenger influx. Effective and efficient travel restrictions pursue high ATD or ICR with a low cost of passenger influx.
Circles represent travel restrictions, and their size is proportional to the number of geographical areas influenced by the travel restrictions. The vertical and
horizontal dashed lines individually represent the average of lost passenger influx and the average of total ATD/ICR for all travel restrictions. The markers
for travel restrictions are the same as those in Fig. 3. The two-letter codes for geographical areas can be found in Supplementary Table 5.
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the global public interest; (2) the sole travel restriction is not
enacted in an optimal time and at optimal locations for the most
significant self-interest. Furthermore, these inefficient travel
restrictions have created a substantial unnecessary loss of pas-
senger influx, ultimately damaging the global economy and social
stability25. These findings prompted us to design the strategic
plans for when and where to impose each travel restriction tai-
lored to the real-time national context. Specifically, we formulate
a bi-objective optimization problem of maximizing travel
restrictions’ the effectiveness (country distancing increase) and
efficiency (the loss of airline passenger influx) (see Eq. (16)). If

governments worldwide coordinately implemented the optimal
travel restrictions, the infection could be dramatically delayed and
avoided.

Using the Non-dominated Sorting Genetic Algorithm (NSGA-
II), we obtain non-dominated solutions for each entry ban and
present the approximate optimal solution, which has the largest
country distancing increase in Fig. 7. Our numerical results show
that the optimal and coordinated travel restrictions significantly
outperform the existing travel restrictions in the three features,
i.e., lost passenger influx, the average ATD, and the total ICR. As
shown in Fig. 7a–c, the coordinated travel restrictions reach of an

Fig. 5 Understanding how travel restrictions distance countries from outbreak locations (OLs). Corresponding to Figs. 3 and 4, the impact of six
example travel restrictions on each geographical area are visualized through the shortest path tree and global maps. a Entry bans imposed by the United
States to Mainland China. b Global travel ban imposed by North Korea. c Lockdown imposed by Mainland China. d Entry bans imposed by the United States
to Japan. e Global travel ban imposed by New Zealand. f Lockdown imposed by Italy. The paths from root (OLs) to other nodes (areas) construct the
shortest path tree. The area that imposed travel restriction is marked with a green star, whereas the areas with no country distancing increase are in gray.
The star area’s travel restriction directly increases its descendants nodes’ distance from the OL. As the number of OLs grows in d–f (multiple OLs merge to
the root), the geographical areas’ country distancing is reduced. The colors of the areas in the trees correspond to the colors on the corresponding maps.
See Supplementary Fig. 12 for the shortest path tree before any travel restrictions are implemented.
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average ATD of 62.39 days (95% CI, 53.36–71.43), with 7.81% of
lost passenger influx. The ICR of the coordinated travel
restrictions is 19,147,287 (95% CI, 9,761,103–46,165,850) cases.
Unlike the existing travel restrictions suggesting that mainland
China contributes most ATD and ICR for the world, the
coordinated travel restrictions work as a whole-of-government
and whole-of-society approach with many geographical areas
contributing substantially to an increased ATD and ICR for the
world45. As shown in Fig. 7d, mainland China occupies small
portions of the ATD and ICR contributions, which decline to
1.75% and ~0% from 58.26% and 49.43%, respectively, when a
coordinated approach is adopted. Concurrently, other geogra-
phical areas contribute more when using a coordinated approach.
For example, the United States’ portion of ATD and ICR
contributions could rise to 9.36% and 2.95% from 4.89% and
0.46%, respectively.

Discussion
We developed a country distancing method that captures the
global disease dynamics when OL evolve. Our method enables us
to systematically quantify the effectiveness and efficiency of travel

restrictions (i.e., entry bans, global travel bans, and lockdowns),
which delay or prevent infections at the cost of loss of air travels.
Our analysis confirms findings from existing studies4,35,39,46,
which conclude that travel restrictions are more effective at the
early stage of the pandemic. Our study reveals that the coex-
istence of multiple OLs substantially weakens the effectiveness of
travel restrictions. In addition, travel restrictions’ effectiveness is
related to the geographical areas’ capability to cut possible disease
propagation paths from existing OLs to other countries. By
maximizing the health impact of travel restrictions, in other
words, increasing the country distancing from OLs and mini-
mizing the loss of air travel, we find that the well deployment of
entry bans to OLs via global joint efforts as early as possible is
sufficient to fight effectively against COVID-19. The optimized
and globally coordinated travel restrictions enable the sustainable
suppression of transmission at a low level47,48, without the use of
radical approaches, such as the global travel bans.

Three main limitations can lead one to overestimate/under-
estimate travel restrictions’ effectiveness: (1) incomplete and
biased travel restrictions data; (2) homogeneous assumptions on
the strengths of different travel restrictions; (3) ignorance that the

Fig. 6 Geographical areas’ contributions and gains in terms of arrival time delay and infected case reduction. According to existing travel restrictions
until 1 June 2020, (a) geographic areas contributed to increasing other countries’ distances from the outbreak locations. The size of the circle in each area
is proportional to its contribution to the global country distancing increase. The curved lines depict the distancing from one area to the destination area. b, c
show the geographic areas’ gains in terms of days of arrival time delay and counts of infected case reduction.
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combined effect of travel restrictions and local anti-contiguous
policies6, such as social distancing policy, work from home, and
school closure, has a substantial effect on reducing the rate of
global spread21,49. Understandably, these three limitations could
be overcome with more available data of the daily GMN. Fur-
thermore, COVID-19 undertesting and underreporting50 would
overvalue the impact of travel restrictions on slowing infection.
Nevertheless, the approach in this study and its implications may
help to control the spread of COVID-19.

The key advantage of the country distancing approach is that it
captures the global diffusion pattern despite the heterogeneous
responses of governments to the pandemic and varying OLs. The
idea of quantifying the health impact of travel restrictions is
useful in the ongoing pandemic and future diseases. Although
many geographical areas attempt to ease their travel restrictions
by escalating the testing and mandatory quarantines for the
incoming travelers, it is clear that addressing how people/infected
people move is key to controlling the disease. Pinpointing the
significance of controlling OLs provides insights to properly
distribute and administer a COVID-19 vaccine when it becomes
available. In summary, the use of country distancing approach
complements existing studies highlighting the significance of
mobility from both the OLs and hubs in GMN. Furthermore, this
study also seeks to balance optimally positive health effects of
travel restrictions with their negative impact on individuals’ free
movement. Knowing that the COVID-19 pandemic is more than

a health crisis and may last until 202251, geographical areas are
continuously enduring the coronavirus importation risk from
other infected areas and enduring social instability. We empha-
size the necessity of a global joint effort to implement travel
restrictions when it seems impossible to curb the spread of
COVID-19 with isolated actions. Although limitations exist, this
study indicates that whole-of-government and whole-of-society
approaches are necessary to fight against coronavirus and
strengthen pandemic preparedness in the future45.

Methods
Model with multiple outbreak locations. We adopt the meta-population SIR
model17,52,53 to simulate the spread of disease in GMN G when OLs are changing.
In the meta-population SIR model, each geographical area n has a population size
of Ωn. The evolving disease within the population is governed by three states (i.e.,
susceptible sn ¼ Sn

Ωn
, infectious in ¼ In

Ωn
, removed rn ¼ Rn

Ωn
), and the disease evolution

between populations is described by the travel influx coupling term pmn. For each
set of OL NI(t):

_sn ¼ �aðtÞsninσðin=εÞ þ cðtÞ∑m≠npmnðtÞðsm � snÞ
_in ¼ aðtÞsninσðin=εÞ � bðtÞin þ cðtÞ∑m≠npmnðtÞðim � inÞ
_rn ¼ bðtÞin þ cðtÞ∑m≠npmnðtÞðrm � rnÞ

8><
>: ð3Þ

with the initial condition given as:

skðtÞ ¼ SokðtÞ=Ωk; ikðtÞ ¼ IokðtÞ=Ωk; rkðtÞ ¼ Ro
kðtÞ=Ωk;8k 2 NI ðtÞ

skðtÞ ¼ 1; ikðtÞ ¼ 0; rkðtÞ ¼ 0; 8k =2NI ðtÞ
ð4Þ

from t to t+ 1. We show the definitions of the parameters as below:

Fig. 7 Comparison between optimized travel restrictions deployed in a coordinated approach and existing travel restrictions. The comparisons are
performed for arrival time delay (a), infected case reduction (b), and lost passenger influx (c). The shaded areas in a, b present the 95% confidence
intervals for the estimated value according to the speeds of arrival times/infected cases (Fig. 2e, f). d Pie charts illustrate the comparisons of the proportion
of geographical areas’ contributions to inducing arrival time delays and infected case reductions. Each solution of optimized travel restriction, which
comprises a set of coordinated entry bans, is the non-dominated solution determined using the non-dominated sorting genetic algorithm II. The markers for
travel restrictions a–c are the same as in Fig. 3 and the two-letter codes for geographical areas can be found in Supplementary Table 5.
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● NI ðtÞ ¼ fnj8n 2 N; IonðtÞ≥ θg are the defined OL set, consisting of the
geographical areas whose reported cases IonðtÞ are greater than the threshold
θ. The time range for NI(t) is from 8 December 2019 to 1 June 2020. For the
initial outbreak date t0= 2019− 12− 08, mainland China is the OL with
Ionðt0Þ ¼ 1.

● a(t) is the infection rate, and b(t) is the remove rate, which is defined as the
sum of recovery rate and death rate.

● cðtÞ ¼ ∑m;nFmnðtÞ
∑nΩn

is the mobility rate.
● pmnðtÞ ¼ Fmn ðtÞ

∑kFknðt0 Þ is the fraction of travel influx, where the influx matrix

Fmn(t) is altered by travel restrictions; see “Passenger influx reduction”.
● σðin=εÞ ¼ ðin=εÞη

ðin=εÞηþ1 is a sigmoid Hill-type function. ε is the threshold for the
disease at a location that can take off when in > ε (ε � M

∑nΩn
¼ 3:242 ´ 0:18).

η (η= 4) is the gain parameter for the threshold ε.
● SokðtÞ, IokðtÞ, and Ro

kðtÞ are the observed susceptible cases, infected cases, and
removed cases at OL k at the start time t.

By adding up the daily new infections caused by different sets of OLs from 8
December 2019 to 1 June 2020, we finally obtain two fundamental properties of
COVID-19 in the iterated simulations, i.e., the arrival time Tm [the date t when
Im(t) ≥ 1] and the infected cases Im(t) for each area m. If the OL does not evolve and
the influx matrix F(t) and epidemiological rate a(t) and b(t) remain the same for all
t, this model is reduced to the classical model as introduced in the literature17.

Passenger influx reduction. We present the travel restrictions by a tuple
fS;T;NI;NS;FSg, where S ¼ 1; 2; :::; s; :::; Sf g is the set of occurrence orders of
travel restrictions, and T ¼ t1; t2; :::; ts; :::; tS

� �
(ts∈ T) is the set of occurrence

dates of travel restrictions. By definition, NI is the set of OLs that occur at time ts

when sth travel restrictions are implemented, NI ¼ N1
I ;N

2
I ; :::;N

s
I ; :::;N

S
I

� �
, and

NS ¼ n1; n2; :::; ns; :::; nS
� �

is the set of geographical areas ns that impose sth

travel restrictions. Specifically, FS ¼ F1; F2; :::; Fs; :::; FS
� �

is influx matrix upda-
ted by the sth travel restrictions. For each travel restriction, we assume that:

(1) An entry ban leads to a α decline in passenger influx from banned areas m to
ns, i.e.,

Fs
nsm ¼ Fs�1

nsmð1� αÞ: ð5Þ
(2) A global travel ban results in a reduction in passenger influx from

neighboring areas m to ns by β, i.e.,

Fs
nsm ¼ Fs�1

nsmð1� βÞ: ð6Þ
(3) A lockdown reduces passenger influx by γ from neighboring areas m to ns

and passenger influx from ns to neighboring areas m, i.e.,

Fs
mns ¼ Fs�1

mns ð1� γÞ;
Fs
nsm ¼ Fs�1

nsmð1� γÞ: ð7Þ

The other weighted links that are not influenced by sth travel restrictions remain
the same, i.e., Fs

mn ¼ Fs�1
mn . Notably, F

0= F. Thus, ∑m;nF
s
mn � F0

mn is the lost
passenger influx until the sth travel restriction is imposed.

Country distancing increase. Based on the influx matrix Fs and the set of OLs Ns
I ,

we could measure the country distancing of geographical area m when sth travel
restriction is imposed with:

DmjðNs
I ;F

sÞ ¼ log
M

∑ni2Ns
I

1
e
dmjðni ;Fs Þ

ð8Þ

where dmjðni ;FsÞ is the effective distance from source ni to destination location m

based on the influx-fraction matrix Ps. Here, Ps
mn ¼ Fs

mn
∑kFkn

, which is derived from Fs

and F. We know that travel restrictions increase the country distancing by
decreasing passenger influx in Fs, whereas the number of OLs Ns

I decreases country
distancing by promoting importation risk from multiple OLs. To better understand
the impact of travel restrictions on country distancing, we exclude the influence of
OLs DmjNs

I
:

DmjFs ¼ DmjðNs
I ;F

sÞ � DmjNs
I

ð9Þ
where:

DmjNs
I
¼

log M
∑ni2Ns

I

1

e
d
mjðni ;Fs�1 Þ

;Ns
I≠N

s�1
I

DmjNs�1
I
;Ns

I ¼ Ns�1
I

8<
: ð10Þ

Given that travel restrictions, which are collected until 1 June 2020, continuously
reduce the airline passengers, the country distancing difference with and without
the sth travel restriction is always non-negative. In detail:

ΔDs
mk ¼ ΔDmjFs ¼ DmjFs � DmjFs�1 ð11Þ

Because ΔDs
mk ≥ 0, we call the non-negative difference ΔDs

mk as the country dis-
tancing increase at geographical area m caused by sth travel restriction imposed by
area k.

Arrival time delay and infected case reduction. Country distancing is a good
predictor for the arrival times and cumulative infected cases, as illustrated in Eq.
(2). Given the country distancing increase (ΔDs

mk) at area m caused by travel
restrictions s implemented by area k, we could map the country distancing increase
(ΔDs

mk) to the delayed infection—ATD and ICR. Specifically, ATD, i.e., the dif-
ference in arrival times with and without sth travel restriction is denoted as:

ΔTs
mk ¼ vðtsÞΔDs

mk ð12Þ
where v(ts) is the speed for arrival times at time ts when sth travel restriction is
implemented. It should be noted that the ATD is only applicable to uninfected
areas. See Algorithm 1 in Supplementary Note 3 for the details. On the other hand,
ICR, i.e., the difference of newly infected cases with and without travel restrictions
for area m at time t is:

ΔImðtÞ ¼ I?mðtÞðe�uðtÞD◊
mðtÞ � 1Þ ð13Þ

where I?mðtÞ ¼ Iomðt þ 1Þ � IomðtÞ is the observed new infected increase in area m
from day t+ 1 to day t and D◊

mðtÞ ¼ ∑s2fsjts ≤ tgΔD
s
mk is the accumulative country

distancing increase due to the travel restrictions implemented by time t. Thus, as of
the end date (tS= 1 June 2020), the accumulative ICR at area m is:

ΔI◊mðtSÞ ¼ 1�
Y
t2T

1� ΔImðtÞ
Ωm

� � !
Ωm ð14Þ

by assuming that daily ICRs in geographical areas are independent. For sth travel
restrictions implemented by area k, the ICR at area m is:

ΔIsmk ¼
ΔDs

mk

D◊
mðtSÞ

ΔI◊mðtSÞ ð15Þ

Given that travel restrictions continuously reduce the airline passengers and con-
tinuously distance geographical areas, the country distancing increase accumulates
over time. Simultaneously, the ICR accumulates over time and grows exponentially
as the country distancing increase accrues. However, as time progresses, more or
less OLs are present, an the intertwined effect of OLs disables existing travel
restrictions. See Algorithm 2 in the Supplementary Note 3 for the details on
obtaining ICR when multiple OLs are present. Substituting the upper and lower
bounds of the 95% confidence interval for v(t) and u(t) in Eqs. (12) and (13), we
obtain the upper and lower limits for ATD and ICR.

Thus, for sth travel restriction implemented by area k, we could calculate its

global average ATD as
∑m∑kΔT

s
mk

M and total ICR as ∑m∑kΔI
s
mk . For each geographic

area k, we could calculate its total contribution of ATD as
∑s∑mΔT

s
mk

M and the total
contribution of ICR as ∑s∑mΔI

s
mk . Furthermore, the gain of ATD in geographic

area k is
∑s∑mΔT

s
km

M and the gain of ICR in geographical area k is ∑s∑mΔI
s
km . Because

the two matrices ΔTs
mk and ΔIsmk are asymmetric, i.e., ΔTs

mk≠ΔT
s
km and ΔIsmk≠ΔI

s
km ,

such that countries’ contributions differ from their gains.

Bi-objective problem. To address the ineffectiveness and inefficiency of the
existing travel restrictions, we formulate the coordinated and targeted travel
restrictions as a bi-objective problem of maximizing their influence on delaying
infection (maximizing the entry bans’ country distancing increase) and minimizing
the loss of airline passenger influx in GMN:

min
θs

0 2Θs0
∑

ðn;kÞ2θs0
ðFs0�1

kn � Fs0
knÞ

max
θs

0 2Θs0
∑
m
ΔDs

mk

s:t: Fs0
kn ¼ Fs0�1

kn ð1� αÞ; ðn; kÞ 2 θs
0

Fs0
kn ¼ Fs0�1

kn ; ðn; kÞ =2 θs
0

ð16Þ

For the sth entry ban implemented by area k, which reduces the passenger influx
from arbitrary area n to area k, we find its corresponding optimized solution θs

0

(θs
0 2 Θs0 ) by selecting one airline link from the GMN. The set Θs0 is the solution

set for the s0 th entry ban. Then each airline link ðn; kÞ 2 θs
0
follows the formulation

Fs0
kn ¼ Fs0�1

kn ð1� αÞ. The optimal solution should ensure that the lost passenger
influx is minimal while maximizing the global country distancing increase. To solve
the problem of minimizing the loss of passenger influx and maximizing country
distancing increase, we adopt the NSGA-II54, a well-known fast sorting and elite
multi-objective genetic algorithm. This algorithm can find the solutions that are
not dominated by any other solutions and are closer to the true Pareto optimal
front in the solution space. Given that we have found that effective travel
restrictions prevent air travels from OLs, we prioritize the solution of entry bans to
OLs. The procedure for generating non-dominated fronts follows the algorithm
proposed in the literature54. Based on experiments, we finally choose a population
of size 100, a crossover probability of 0.5, and a mutation probability of 0.5 to solve
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the problems of balanced travel restrictions. The algorithm terminates after it runs
1000 generations.

Data availability
All data needed to evaluate the paper’s conclusions are presented in the Supplementary
Note 1. Additional data related to this paper may be requested from the authors.
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