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Distributed Temperature Control
in Laser-Based Manufacturing
Temperature control is essential for regulating material properties in laser-based manu-
facturing. Motion and power of the scanning laser affect local temperature evolution,
which in turn determines the a posteriori microstructure. This paper addresses the prob-
lem of adjusting the laser speed and power to achieve the desired values of key process
parameters: cooling rate and melt pool size. The dynamics of a scanning laser system is
modeled by a one-dimensional (1D) heat conduction equation, with laser power as the
heat input and heat dissipation to the ambient. Since the model is 1D, length and size are
essentially the same. We pose the problem as a regulation problem in the (moving) laser
frame. The first step is to obtain the steady-state temperature distribution and the corre-
sponding input based on the desired cooling rate and melt pool size. The controller
adjusts the input around the steady-state feedforward based on the deviation of the meas-
ured temperature field from the steady-state distribution. We show that with suitably
defined outputs, the system is strictly passive from the laser motion and power. To avoid
over-reliance on the model, the steady-state laser speed and power are adaptively
updated, resulting in an integral-like update law for the feedforward. Moreover, the heat
transfer coefficient to the ambient may be uncertain, and can also be adaptively updated.
The final form of the control law combines passive error temperature field feedback with
adaptive feedforward and parameter estimation. The closed-loop asymptotical stability is
shown using the Lyapunov arguments, and the controller performance is demonstrated in
a simulation. [DOI: 10.1115/1.4046154]

1 Introduction

Laser additive manufacturing (LAM) is gaining interest in rapid
prototyping, coating, parts repairing etc. due to its ability to gener-
ate a wide range of configuration and geometries, through a layer-
by-layer melting–solidification process [1]. Although literature
has suggested its capability of creating superior properties com-
pared to the wrought material through rapid melting and cooling
[2], variabilities and inconsistencies in the fabrication process
often degrade the performance of the finished part. As a result,
LAM has not been widely applied to critical industries such as
aerospace, energy, and automotive [3].

Material properties are largely determined by microstructure.
Characterization of microstructure evolution in LAM has been
extensively studied [1,2,4–6]. Tight control of the processing con-
ditions is necessary for optimizing the material microstructure,
and in turn, physical properties [7,8]. Similar to metallic manufac-
turing processes, thermal processing is critical to the microstruc-
ture of the finished part. Suitable control of the thermal condition
could achieve parts with desired hardness, strength, etc. [9]. In
Refs. [3] and [10], the thermal control problem is reduced to the
regulation of the real-time cooling rate. Thermal control in LAM
is similar to that in arc welding [11–14]. Distributed parameter
heat transfer models have been developed [13,15,16], and process
parameters, such as cooling rate and melt pool size, have been
identified as key indicators of the resulting material properties
[17,18]. Various methods have been proposed to regulate these
parameters by estimating and feedback them back to controlling
the motion and power of the scanning laser, including neural net-
work [17], controller design based on identified linear models
[14], and direct estimation and feedback of the cooling rating with
an IR camera [3]. Recently, multiple tracks and multilayer part

fabrications have been investigated in Refs. [19] and [20] using
iterative learning control techniques. In the current literature, pro-
posed models for laser manufacturing processes are open-loop sta-
ble and closed-loop control approaches are used to achieve
performance requirements and to ensure robustness to
perturbations.

In this paper, we propose an alternate approach of temperature
control in LAM. We regulate the distributed temperature field in
the laser frame, with the target temperature field design based on
the desired values of key process parameters such as cooling rate
and melt pool size. We model the system dynamics as a one-
dimensional (1D) heat conduction problem, with Newtonian heat
loss to the ambient and heat input from the moving laser. This is a
simplification of the full problem, which is three-dimensional
(3D), involves solidification and melting, and contains dynamics
of the liquid–solid interface (see Stephan problem [21,22] for the
static heat source case). We use the simplified model to develop
the control methodology, which would lay the foundation to
tackle the more complex full-scale problem. Our approach decom-
poses the problem into two parts. The first part designs a desired
temperature distribution and the corresponding laser input in the
laser frame to meet certain criteria, e.g., the cooling rate and melt
pool size. By using an energy-like Lyapunov function, we show
that the input (deviation from the desired values) to a set of suit-
ably chosen outputs, which depend on the temperature field error,
is strictly passive. The Lyapunov approach leads to a large family
of stabilizing controllers and also provides the framework for the
adaptation of uncertain heat transfer to the ambient. The strict pas-
sivity implies that any passive feedback is stabilizing. A particular
choice is simply a constant feedback as in proportional control.
The constant feedforward portion of the controller depends on the
model. It may be estimated based on the temperature field error,
resulting in an integral-like term. The proportional-integral (PI)
control is a special case of this family of passive-integral stabiliz-
ing control laws. When the heat transfer to the ambient is also
uncertain, it may be adaptively estimated and incorporated into
the control law. The resulting control structure is a passive
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temperature field error feedback combined with an integral control
estimating the feedforward laser speed and power and an adapta-
tion term for the heat transfer coefficient of the ambient heat loss.
We use the 1D partial differential equation (PDE) model as the
truth model for evaluating the controller performance. For computa-
tion, we use the truncated modal expansion as an approximation of
the full model. For controller design and stability analysis, we use
the moving laser frame by applying a coordinate transformation
similar to [11], resulting in a reaction–advection–diffusion equation.
Simulation results of open-loop response and closed-loop response
with and without incorporating the estimation of heat transfer coef-
ficient a are presented as demonstration of the proposed control
strategies. The PDE model is parabolic, which may be approxi-
mated by a finite dimensional ordinary differential equation (ODE),
e.g., using the modal coordinate. With the laser motion and power
as input variables, the control problem contains a bilinear advective
term, which is a key challenge addressed in this paper.

This paper is organized as follows: In Sec. 2, we discuss the
derivation of the 1D PDE model. Section 3 presents the formula-
tion of the control problem, optimization based on different crite-
ria for desired temperature field evolution, and statement of the
control objective. Section 4 describes the control design to
achieve set point regulation, and in turn, the desired cooling rate
and melt pool size. Section 5 presents the simulation results.
Section 6 concludes the paper.

2 Temperature Evolution Model

2.1 Inertial Frame Model. Within a single scan, we approxi-
mate the system dynamics in terms of the temperature distribution
in a rod along the scanning direction (as shown in Fig. 1). This
rod may be considered as the active volume where crucial thermal
(and microstructure) evolution occurs. Let the cross-sectional area
and perimeter of the rod be �S and �A. Denote the temperature dis-
tribution along the scan direction, x, by T(x, t). The rod is heated
by a moving laser heat source with power P(t) with the laser beam
centered at sðtÞ ¼ s0 þ

Ð t
0

vðsÞds, where s0 denotes the initial posi-
tion and vðtÞ � 0 the scanning speed. Represent the laser power
distribution by a function PðyÞ where y ¼ x� sðtÞ is the position
relative to the laser beam center. Commonly used laser power dis-
tribution includes d distribution [17], rectangular function

P yð Þ ¼
1

D
rect
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¼

1

D
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where D is the effective diameter of laser beam, and the Gaussian
power distribution [15]

P yð Þ ¼ N 0;rð Þ ¼ 1

r
ffiffiffiffiffiffi
2p
p e�

y2

2r2 (2)

Heat generated by the laser conducts along the x direction, and
also transfers through the lateral surface of the rod. This work
only focuses on temperature variation along the laser scanning
direction; we approximate the lateral heat loss by a lumped heat
sink with Newton’s law of cooling: qloss ¼ bðT � T1Þ where T1
is the ambient temperature and b is a heat transfer coefficient. In
free-form additive manufacturing, b may be both spatial and time
dependent, caused by different cooling conditions in different
structures and materials. This is a key source of disturbance
affecting the temperature distribution.

In a thin slice of the rod of thickness Dx, by the conservation of
energy, we have

Dx �AqCp T tþ Dtð Þ � T tð Þ
� �

Dt

¼ �k �A Tx xþ Dxð Þ � Tx xð Þ
� �

� �SDxqloss þ Q x; tð ÞDx (3)

where �k , Cp, and q are, respectively, thermal conductivity, specific
heat, and density. The subscript in Tx denotes ð@T=@xÞ. The volu-
metric heat flux due to the moving laser, Q(x, t), is

Qðx; tÞ ¼ jPðtÞPðx� sÞ (4)

where j 2 ð0; 1Þ denotes the laser energy transfer efficiency,
which is usually between 30% and 50% [23]. Define
uðx; tÞ ¼ Tðx; tÞ � T1. With Dx! 0, Eq. (3) becomes

utðx; tÞ ¼ kuxxðx; tÞ � auðx; tÞ þ pðtÞPðx� sðtÞÞ (5)

where

k ¼
�k

qCp
; p tð Þ ¼ jP tð Þ

�ADqCp
; a ¼

�Sb
�AqCp

Material-related parameters k and j are usually known, but the
heat-loss coefficient a is unknown and possibly varying with time
and position. Assuming a long rod with both ends held at the
ambient temperature. As an approximation, we use a Dirichlet
boundary condition uð�‘; tÞ ¼ uð‘; tÞ ¼ 0 for a sufficiently large
‘. Also, assume that the rod is initially in equilibrium with the
ambient: uðx; 0Þ ¼ 0: Consider the laser velocity as the input; then
the laser position s is given by

_sðtÞ ¼ vðtÞ; sð0Þ ¼ s0 (6)

Equations (5) and (6) describe the control model, with
ðuðx; tÞ; sðtÞÞ as the state and ðvðtÞ; pðtÞÞ as the input.

2.2 Laser Frame Model. Since the laser constantly moves,
stability is not meaningful in the inertial frame. Instead, we con-
vert the dynamics to the laser frame, similar to Ref. [11]. Define a
coordinate system attached to the laser:

yðtÞ ¼ x� sðtÞ (7)

Define the temperature distribution in the laser frame as

Uðy; tÞ :¼ uðyþ sðtÞ; tÞ ¼ uðx; tÞ (8)

Note that Uyðy; tÞ ¼ uxðx; tÞ. Hence, Uyyðy; tÞ ¼ uxxðx; tÞ and

Ut y; tð Þ ¼
@

@t
U y; tð Þ ¼ v tð Þ @

@x
u yþ s tð Þ; tð Þ þ @

@t
u yþ s; tð Þ

¼ v tð ÞUy y; tð Þ þ ut yþ s; tð ÞFig. 1 One-dimensional domain of a single laser scan
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Substituting into Eq. (5), we obtain an advection–
diffusion–reaction equation

Ut ¼ kUyy þ vðtÞUy � aU þ pðtÞPðyÞ (9)

For the boundary condition, assume that the temperature is at
ambient sufficiently far away from the laser, i.e.,
Uð�L; 0Þ ¼ UðL; 0Þ ¼ 0, for L sufficiently large.

2.3 Steady-State Solution in Laser Frame. For constant
laser speed and power, ðvðtÞ; pðtÞÞ ¼ ðv�; p�Þ, we can solve for the
steady-state temperature distribution U�ðyÞ by setting Utðy; tÞ to
zero in Eq. (9)

kU�yyðyÞ þ v�U�y ðyÞ � aU�ðyÞ þ p�PðyÞ ¼ 0

U�ð�LÞ ¼ U�ðLÞ ¼ 0 (10)

This is a linear nonhomogeneous ODE, and may be readily
solved. Analytical solutions for three typical input laser profiles,
delta, rectangular, and Gaussian functions, are derived in
Appendix A. Furthermore, this equilibrium is globally exponen-
tially stable as shown below.

THEOREM 1. Given the temperature evolution equation in the
laser frame (9) with constant laser speed and power input ðv�; p�Þ,
the equilibrium U� given by Eq. (10) is globally exponentially
stable.

Proof. Consider the Lyapunov function candidate

V1 ¼
1

2

ðL

�L

~U y; tð Þ2dy (11)

where ~Uðy; tÞ :¼ Uðy; tÞ � U�ðyÞ. The derivative of V along
Eq. (9) and with the help of Eq. (10) is written as follows:

_V1 ¼
ðL

�L

~U y; tð Þ kUyy y; tð Þ þ v�Uy y; tð Þ � aU y; tð Þ þ p�P yð Þ
� �

dy

¼
ðL

�L

~U y; tð Þ k ~Uyy y; tð Þ þ v� ~Uy y; tð Þ � a ~U y; tð Þdy
�

¼ k ~U y; tð Þ ~Uy y; tð Þ
h iL

�L
�k

ðL

�L

~Uy y; tð Þ2dy

þ 1

2
v� ~U y; tð Þ2
h iL

�L
�a
ðL

�L

~Uy y; tð Þ2dy

¼ �k

ðL

�L

~Uy y; tð Þ2dy� a
ðL

�L

~Uy y; tð Þ2dy

(12)

Hence, we get

_V � �2aV (13)

It follows that VðtÞ � e�2atVð0Þ. Therefore, the equilibrium U�ðyÞ
is globally exponentially stable. �

3 Control Problem Formulation

The control problem is to adjust laser speed and power, (v, p) in
order to achieve a desired temperature field evolution u�ðx; tÞ. LAM
and welding literature points to two critical temporally and spatially
varying process parameters, cooling rate and melt pool size:

(1) Cooling rate: For each x, the thermal history u�ðx; tÞ
directly determines the microstructure evolution at x, and
hence the final material properties. Cooling rate is a widely
adopted criterion for designing this thermal history [10,14].

(2) Melt pool size: For each t, the temperature distribution
around the laser u�ðx; tÞ affects the surface morphology of
the finished part. The melt pool size is determined by the
speed of propagation of the solidification front, and conse-
quently affects the geometric integrity of the final part
shape. It has been used in the welding [18] and laser addi-
tive manufacturing [24] literature to characterize geometric
consistency.

Our goal is to regulate both parameters to achieve consistent
microstructure and part geometry. If the objectives cannot be met
simultaneously because of constraints in scanning speed and laser
power, we form a linear combination of the objectives with a tun-
able parameter to specify the relative emphasis of the objectives.
This section will discuss the characterization of these two criteria
and the corresponding control problem formulation.

3.1 Cooling Rate. Figure 2 illustrates the typical thermal his-
tory at a specific point on the part. The laser heats up the part
beyond melting and the part cools as the laser moves away. The
cooling history is critical to the determination of the final material
microstructure. Following Ref. [25], we define the cooling rate as
the time rate of change at a critical temperature

Cr xð Þ ¼ � @u

@t
x; tð Þjt¼tcr

(14)

where uðx; tcrðxÞÞ ¼ Tcr and @u
@t ðx; tÞjt¼tcr

< 0. The cooling rate
only accounts for one single point on the cooling curve (see
Fig. 2) and is easy to implement in closed-loop control. Its value
at the point of solidification is important to the microstructure, so
Tcr is typically chosen as the solidification temperature. Cooling
rate is by its nature a posteriori and location-based as it is charac-
terized by the thermal history at a specific location. An illustration
of the concept of Cr(x) is shown in Fig. 3(a). To obtain Cr(x) at
x ¼ �x, one needs to first get the temperature history uð�x; tÞ, find
tcrð�xÞ, and then compute the time derivative at that point.

In contrast to the location-based cooling rate, Refs. [14], [17],
and [18] proposed a time-based cooling rate, which is the time
derivative at the current critical temperature position xcrðtÞ

Cr tð Þ ¼ � @u

@t
x; tð Þjx¼xcr tð Þ (15)

where xcr is defined as the part location currently at the critical
temperature

uðxcrðtÞ; tÞ ¼ Tcr (16)

Figure 3(b) shows the definition of Cr(t). To obtain Cr(t) for t ¼ �t,
one needs to get xcrð�tÞ from the current temperature snapshot
uðx;�tÞ, then compute Crðxcrð�tÞÞ following the procedures of
location-based cooling rate mentioned above. Transformed into
the laser frame, Eq. (15) becomesFig. 2 Typical thermal history of a fixed point on the part
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Cr tð Þ ¼ � @

@t
U y tð Þ; tð Þjy tð Þ¼ycr

¼ Uy y; tð Þv tð Þ � Ut y; tð Þ
� �

jy¼ycr
tð Þ

:¼ F U tð Þ; v tð Þð Þ (17)

where ycr is the part location in the laser frame at the critical tem-
perature: Uðycr; tÞ ¼ Tcr.

3.2 Melt Pool Size. To achieve uniform part quality, the
average temperature in the melt pool [10] or the size of the melt
pool [14] has been identified as critical parameters. Originally,
melt pool size W is defined as the width of the melt pool along the
direction perpendicular to the scanning direction, which directly
determines the geometry and size of the finished clad [26], and
hence the overall surface morphology of the finished part. How-
ever, in 1D model, we can only use the size along the scanning
direction as a proxy. At each t, define the melt pool as

WðtÞ ¼ fx 2 ½�‘; ‘� : uðx; tÞ � Tmeltg

¼ fy 2 ½�L;L� : Uðy; tÞ � Tmeltg

The melt pool size W(t) at each time instance t is then

WðtÞ ¼ max
y2WðtÞ

y� min
y2WðtÞ

y :¼ GðUÞ (18)

Note that W may be similarly defined using U, resulting in the
same W. If the peak temperature is lower than Tmelt, W is empty.
In that case, W¼ 0.

We also characterize the melt pool size, W(x), corresponding to
a given location x, as the melt pool size when the laser passes
through x.

Define the time when the laser passes through x as tpassðxÞ, i.e.,
x ¼ sðtpassðxÞÞ. The location-based melt pool size is then defined
as

WðxÞ ¼ WðtpassðxÞÞ (19)

3.3 Design of Steady-State Temperature Distribution. As
shown in Sec. 2.3, for constant ðv�; p�Þ, U(y, t) converges to a
steady temperature distribution U�ðyÞ exponentially. We now
choose ðv�; p�Þ based on desired cooling rate and melt pool size.
For the cooling rate, we use the time-based cooling rate (17).
Given U�ðyÞ (corresponding to specified ðv�; p�Þ), it becomes

Cr� ¼ U�y ðycrÞv�; U�ðycrÞ ¼ Tcr (20)

where Tcr is a specified critical temperature, and ycr is define with
the implicit equation above. The weld pool size corresponding to
U� is given by

W� ¼ fy : U�ðyÞ � Tmeltg
W� ¼ maxW� �minW�

(21)

The steady-state temperature design is now posed as a static opti-
mization problem.

Given desired cooling rate and melt pool size, ðCrdes;WdesÞ,
ðCr�;W�Þ from Eqs. (20) and (21), and constant weights (w1, w2),
find ðv�; p�Þ; v� 2 ½0; vmax�; p� 2 ½0; pmax�, to minimize

J ¼ w1ðCr� � CrdesÞ2 þ w2ðW� �WdesÞ2 (22)

In general, this problem may be numerically solved. In the case of
PðyÞ ¼ dðyÞ; ðv�; p�Þ may be analytically related to the specified
ðCr�;W�Þ (given by Eqs. (B1) and (B4), as shown in Appendix 6).
Denote the solution as

v� ¼ f ða;CrdesÞ; p� ¼ gða; v�;WdesÞ

where the dependence on a is highlighted. These expressions may
be used as an approximation of rectangular power input function.
As shown in Fig. 4, U�ðyÞs corresponding to the delta function
and rectangular function of various width D are reasonably close.

3.4 Control Objective. The control objective is to drive the
temperature distribution in the laser frame U(y, t) to the desired
U�ðyÞ by adjusting the laser speed and power (v, p) based on the
measured U(y, t). The desired U�ðyÞ is designed based on the
specified desired cooling rate and weld pool size, ðCrdes;WdesÞ as
described in Sec. 2.3. The measurement of the temperature distri-
bution U(y, t) may be performed with an IR camera mounted with
the laser. The control objective needs to be robust with respect to

Fig. 3 Definition of melt pool size and cooling rate defined with respect to location and time. (a) Explains Cr(x) for a spatial posi-
tion x 5 �x . (b) Presents Cr(t) and W(t) for a time instance t 5 �t . (c) Illustrates W(x) for a spatial position x 5 �x .

Fig. 4 Analytical solution of the steady-state under rectangu-
lar laser power distribute on function P(X ) defined by Eq. (1)
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unmodeled disturbances, such as stray ambient heat, model uncer-
tainties, such as the heat transfer coefficient, a, for loss to the
ambient, and nonzero initial conditions.

4 Control Design

4.1 Passivity-Based Output Feedback. With U�ðyÞ given by
Eq. (10) (and ðv�; p�Þ computed based on ðCrdes;WdesÞ), the tem-
perature error is governed by

~Utðy; tÞ ¼ k ~Uyyðy; tÞ � a ~Uðy; tÞ þ v ~Uyðy; tÞ
þ~vðtÞU�y ðy; tÞ þ ~pðtÞPðyÞ (23)

~Uð�L; 0Þ ¼ ~UðL; 0Þ ¼ 0 (24)

where

~UðtÞ ¼ Uðy; tÞ � U�ðyÞ; ~vðtÞ ¼ vðtÞ � v�; ~pðtÞ ¼ pðtÞ � p�

If ðv�; p�Þ are known, we show that ð~vðtÞ; ~pðtÞÞ is strictly passive
[27] with respect to certain specified outputs.

PROPOSITION 1. The temperature error system (23) is strictly pas-
sive with respect to inputs ð~vðtÞ; ~pðtÞÞ and outputs (yv, yp) given by

yvðtÞ ¼
ðL

�L

~Uðy; tÞU�y ðyÞdy (25a)

ypðtÞ ¼
ðL

�L

~Uðy; tÞPðyÞdy (25b)

Proof. The statement follows from the same Lyapunov analysis as
in the proof of Theorem 1. Taking the derivative of the Lyapunov
function (11) along Eqs. (23) and (24), one gets

_V1 ¼ �k

ðL

�L

~Uyðy; tÞ2dy� a
ðL

�L

~Uðy; tÞ2dy

þ~vðtÞ
ðL

�L

~Uðy; tÞU�y ðyÞdyþ ~pðtÞ
ðL

�L

~Uðy; tÞPðyÞdy

Integrating both sides, the stated strict passivity property
follows. �

It then follows that with any passive feedback, the system
remains globally exponentially stable, as shown below.

THEOREM 2. Given the feedback control law

~vðtÞ ¼ �KvyvðtÞ; ~pðtÞ ¼ �KpypðtÞ (26)

where Kv and Kp are passive maps and ðyvðtÞ ; ypðtÞÞ is defined in
Eq. (25), the closed-loop system (23) is globally exponentially
stable.

Proof. Substituting Eq. (26) into _V in the proof of Proposition
1, we have

_V � �2aV � yvKvyv � ypKpyp

Integrating both sides and applying the passivity property of Kv

and Kp, it follows that the zero equilibrium, ~U ¼ 0, is globally
exponentially stable. �

A common choice of Kv and Kp is simply a constant gain,
which results in a proportional output feedback control law.

4.2 Estimation of (v�; p�): Integral Control. The control law
(26) requires the knowledge of ðv�; p�Þ. If they are uncertain or
unknown, they may be estimated using the same Lyapunov analy-
sis as before. The result is summarized below.

THEOREM 3. Consider the feedback control law

vðtÞ ¼ v̂� � KvyvðtÞ; pðtÞ ¼ p̂� � KpypðtÞ (27a)

_̂v
� ¼ �KIv

yvðtÞ; _̂p
� ¼ �KIp

ypðtÞ (27b)

Then the zero equilibrium of the closed-loop system (23) is glob-
ally asymptotically stable.

The controller structure from the above is essentially PI control
with output feedback of (yv, yp). This control law means that the
temperature distribution U(y, t) would still converge to U�ðyÞ,
despite the possible use of an erroneous model and ðv�; p�Þ.

Remark 1. The control design relies on the real-time measure-
ment of the distributed temperature along with the spatial domain.
This may be obtained using an infrared camera [3]. In Ref. [28],
acoustic and electromagnetic signatures are used to measure tem-
perature as well as the thermal history of materials. Standard CCD
or CMOS image arrays have also been used to estimate melt pool
shape and temperature profiles [29–33].

4.3 Estimation of a. If the model is erroneous, then U�ðyÞ
may not correspond to our ultimate control objective of regulating
ðCrðtÞ;WðtÞÞ. We consider the case where the major model uncer-
tainty is the heat transfer coefficient a. In this case, we construct
an estimator for a by replicating the nominal plant. The conver-
gence property of the estimator is summarized below.

PROPOSITION 2. Let Ûðy; tÞ be the solution of

Û tðy; tÞ ¼ kÛyyðy; tÞ þ vðtÞÛyðy; tÞ � âÛðy; tÞ þ pðtÞPðyÞ
þKeðUðy; tÞ � Ûðy; tÞÞ (28)

Ûð�L; tÞ ¼ ÛðL; tÞ ¼ 0 (29)

where â is updated with

_̂aðtÞ ¼ c
ðL

�L

Ûðy; tÞðUðy; tÞ � Ûðy; tÞdy (30)

Then jÛ � Uj converge to zero as t!1.
Proof. Define the Lyapunov function candidate

V2 ¼
1

2

ðL

�L

�U y; tð Þ2dyþ 1

2c
�a2 tð Þ

where �Uðy; tÞ :¼ Uðy; tÞ � Ûðy; tÞ; �a :¼ a� â and c is a positive
gain parameter. The derivative along Eqs. (9), (28), and (30) is
written as follows:

_V 2 ¼
ðL

�L

k �Uðy; tÞ �Uyyðy; tÞdy� ðaþ KeÞ
ðL

�L

�Uðy; tÞ2dy

þvðtÞ
ðL

�L

�Uðy; tÞ �Uyðy; tÞdyþ �aðtÞ
ðL

�L

�Uðy; tÞÛðy; tÞdy

�c�1�aðtÞ _̂aðtÞ

¼ �k

ðL

�L

�Uyðy; tÞ2dy� ðaþ KeÞ
ðL

�L

�Uðy; tÞ2dy

Note that the terms involving �a are canceled with the choice of
the â update rule (30). Integrating both sides and applying Barba-
lat’s Lemma [27], it follows that j �U j ! 0 as t!1. �

As typical in parameter estimation, additional persistent excita-
tion condition [27] on Û needs to be satisfied to ensure the conver-
gence of â to a. Since there is only one parameter to estimate (a is
a scalar), this condition is satisfied unless the system is already at
steady-state. The estimator involves the solution of a partial dif-
ferential equation. Any numerical scheme may be used, e.g., the
finite difference method or the proper orthogonal decomposition
with the eigenfunctions of kð�Þyy as the basis of the projection
(described in Sec. 5.1).

4.4 Overall Control Structure. The overall control system is
shown in Fig. 5. The estimator (28)–(30) generates âðtÞ, which
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feeds into the setpoint optimizer (as described in Sec. 3.3) to com-
pute U�ðyÞ. The feedback controller uses the measured and target
temperature distribution, U(y, t) and U�ðyÞ, to updates the laser
speed and power, ðvðtÞ; pðtÞÞ, as in Eq. (27).

5 Simulation Results

5.1 Simulation Model. A variety of numerical schemes may
be used to compute the solution of Eqs. (5) and (6) under input
(v, p). In this paper, we apply the modal approximation using the
natural mode of the unforced system (see Appendix 6). Express
u(x, t) in the modal basis for each t

uðx; tÞ ¼
X1
i¼0

qiðtÞ/iðxÞ (31)

Projecting Eq. (5) onto /i, we have

_qi ¼ �ðki þ aÞqi þ biðsÞp; qið0Þ ¼ 0 (32)

The ith input coefficient biðsÞ is given by

biðsÞ ¼ h/i;Pð� � sÞi ¼
ð‘

0

/iðxÞPðx� sÞ dx (33)

where h�; �i denotes the L2½0; ‘� inner product. For the delta func-
tion laser input, biðsÞ ¼ /iðsÞ. For the rectangular laser pulse

b0 ¼
Dffiffi
‘
p ; bi ¼

2
ffiffiffiffiffi
2‘
p

ip
sin

ipD

2‘

� �
sin

ips

2‘

� �
; i > 0 (34)

For the Gaussian laser pulse, bis may be computed by numerical
integration. For the simulation results presented in this section, we
approximate u(x, t) by the first N modes, where N is determined
by a specified convergence criterion. Because of the moving heat
source and the large domain size ‘, a large N is typically needed.

5.2 Choice of Parameters. The material for simulation is
chosen as stainless steel 316 (as in Ref. [3]). Table 1 lists the
material properties used in the simulation. The critical microstruc-
ture evolution during cooling of stainless 316 happens between
700 �C and 1300 �C [10]. We choose the midpoint of this tempera-
ture range as the critical temperature (Tcr ¼ 1000 �C) for meas-
uring type-II cooling rate. Other nonmaterial-related simulation
parameters are provided in Table 2. We select �A; �S, b (and the
associated a) to match the experimental results in Ref. [3]. A com-
parison of the steady-state melt pool temperature and cooling rate
between the 1D model simulation and the experimental data from
Ref. [3] is shown in Fig. 6. The extraction of these values from
the simulated data follows the description in Ref. [3]. The

Fig. 5 The structure of control design

Table 1 Material-related parameters

Parameter Value

k0 1:3	 10�2 W m�1 K�1

Cp 490 J kg�1 K�1

q 7:87	 10�6 kg mm�3

Tmelt 1400 �C
Tcr 1000 �C

Table 2 Other simulation parameters

Parameter Value

j 50%
�A 11 mm2

�S 20 mm
b 0:6 J mm�2 K�1

T1 21 �C
‘ 100 mm
s0 20 mm
N 200
Dt 0.01 s
a 0.7

Fig. 6 Comparison of the steady-state response of the maxi-
mum melt pool temperature and cooling rate between 1D simu-
lation and experimental data from Ref. [3]
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maximum temperature is used as the melt pool temperature (cor-
responding to the maximum pixel temperature in the infrared
image used in the experiments). The cooling rate is calculated
based on the change of the maximum temperature at DT ¼ 0:91 s
apart. The comparison between the transient responses of the melt
pool temperature under various scanning speed is shown in Fig. 7.
The simulation captures the trend of melt pool temperature and
cooling rate versus scanning speed, and the time constant of the
transient response. However, there are significant differences in
numerical values. The discrepancies may be due to the 3D heat
transfer and melting and solidification process ignored 1D model
approximation.

The desired cooling rate for simulation is chosen as
Crdes ¼ 500 K s�1, which corresponds to an a posteriori hardness
of 258 HV1000 [10]. The desired melt pool size for simulation is
chosen as Wdes ¼ 3 mm. In practice, choice of Wdes needs to con-
sider the two-dimensional spacing between the adjacent laser
scans, or the desired width of the finished part when building a
thin-wall structure.

5.3 Open-Loop Response to Optimized Input. We first
present the simulation results on open-loop response, as shown in
Fig. 8. In this case, a ¼ 0:7 is correctly known. The inputs are
chosen as time-constant values optimized based on Crdes, Wdes,
and (B1), (B4): v ¼ v� ¼ 129:32 mm=min; P ¼ �ADqCpp�=j
¼ 768:32 W. As shown in Table 2, on a 100 mm long part, the
laser starts from s0 ¼ 20 mm. Initial condition for temperature is
set at ambient. To exclude the effect of boundaries, the area of
interest for temperature control is from x¼ 20 mm to x¼ 80 mm.
The simulation is terminated at t¼ 30 s, before which the
location-specific cooling rate and melt pool size over the entire
area of interest become valid.

Fig. 8 Open-loop response under optimized control inputs when a 5 0:7 is correctly known. v 5 v �5 129:32 mm/min;
P 5 �ADqCpp�/j 5 768:32 W. (b) plots the full temperature field evolution. (a) and (c) plot, respectively, the temperature evolu-
tion at specific spatial location x’s and the temperature distribution snapshots at specific time instance t’s. (d) plots the evolu-
tion of cooling rate and melt pool size. (e) shows the a posteriori spatial distribution of cooling rate and melt pool size. The
area of interest for temperature control is from x 5 20 mm to x 5 80 mm.

Fig. 7 Comparison of the transient response of the maximum
melt pool temperature between 1D simulation and experimental
data (B1: m 5 25 mm/min, B2: m 5 50 mm/min, B3: m 5 100 mm/min,
B4: m 5 200 mm/min. Experimental plot is from Fig. 9 in Ref. [3]).
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Fig. 9 Open-loop response under optimized control inputs when the known â 5 0:6 but the true a 5 0:7.
v 5 v �5 188:30 mm/min; P 5 �ADqCpp�/j 5 757:93 W. (b) plots the full temperature field evolution. (a) and (c) plot, respectively, the
temperature evolution at specific spatial location x’s and the temperature distribution snapshots (represented in the moving laser
frame) at specific time instance t’s. (d) plots the evolution of cooling rate and melt pool size. (e) shows the a posteriori spatial dis-
tribution of cooling rate and melt pool size. The area of interest for temperature control is from x 5 20 mm to x 5 80 mm.

Fig. 10 Closed-loop response with U� computed from the correctly known a 5 0:7. (b) plots the full temperature field evolu-
tion. (a) and (c) plot, respectively, the temperature evolution at specific spatial location x’s and the temperature distribution
snapshots at specific time instance t’s. (d) shows the input response. (e) plots the evolution of cooling rate and melt pool
size. (f) shows the a posteriori spatial distribution of cooling rate and melt pool size. The area of interest for temperature con-
trol is from x 5 20 mm to x 5 80 mm.
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Figure 8(b) shows the full temperature field evolution as a
three-dimensional surface. Plots in Fig. 8(a) are two-dimensional
slices of the three-dimensional surface with respect to specific
locations, representing their temperature histories. Figure 8(c)
plots the temperature field snapshots (slides with respect to spe-
cific time instances) in the (moving) laser frame. Based on all
these slices, location-based and time-based cooling rate and melt
pool size are then calculated and plotted in Figs. 8(d) and 8(e). It
can be seen that after about 4 s, the temperature distribution in the
laser frame goes to the steady-state U�. The time-based cooling
rate Cr(t) and melt pool size W(t) also reach steady-state after,
respectively, around 3 s and 4 s. Note that a small steady-state
error exists due to using delta laser pulse as approximation for
solving the optimal input. From the location-based cooling rate
and melt pool size, we conclude that except for the initial portion
(x ¼20 to 28 mm), the control objective is well-achieved on the
area of interest.

Another case of open-loop response is shown in Fig. 9,
where the true a ¼ 0:7 is incorrectly known as â ¼ 0:6. The
input is optimized according to the wrong â as v ¼ v�

¼ 180:30 mm=min; P ¼ �ADqCpp�=j ¼ 757:93 W. The simula-
tion is terminated at t¼ 21 s. A steady-state different from U� has
been reached (Fig. 9(c)), resulting in deviation of both Cr and W
from the desired values (Figs. 9(d) and 9(e)).

5.4 Closed-Loop Response With Known a. In this part, we
show that the same control objective can be achieved by the pro-
posed closed-loop control scheme integrating passivity-based out-
put feedback and adaptation of v�; p�. A constant proportional
gain is used for the passivity feedback. We assume that the heat
transfer coefficient a ¼ 0:7 is known. Figure 10 shows the simu-
lated results of using the PI control with U�ðyÞ computed with the
correct a. PI control gains, ðKv;Kp;KIv

;KIp
Þ, are tuned to mini-

mize both response time and overshoot of time-based cooling rate
and melt pool size. The selected gains are presented in Table 3.
Antiwindup strategies are applied for the integral control. The
maximum laser power and scanning velocity are chosen as
Pmax¼ 2000 W, vmax ¼ 300 mm min�1. From Fig. 10(c), it is seen
that Uðy; tÞ ! U�ðyÞ. Figure 10(d) shows that a steady-state
is reached in 2.3 s for Cr(t) and 2.5 s for W(t), significantly faster
than in the open-loop response. As a result, the control
objective is achieved in all area of interest except for the initial
portion x ¼ 20 to 25 mm, shorter than that in the open-loop case.

We also present another case of closed-loop response in Fig. 11
with a incorrectly known. With proportional-integral-like feed-
back applied, U(y, t) converges to a steady-state (Fig. 11(c)) very
close to U�ðyÞ. As a result, the steady-state melt pool size con-
verges very close to the desired value (Figs. 11(e) and 11(f)).
However, the cooling rate settled at 20% higher compared to the
desired value, mainly due to the higher scanning speed than v�

reached at steady-state (Fig. 11(d)).

5.5 Closed-Loop Response With a Estimation. In practice,
the heat transfer coefficient a may not be readily known and also
may vary between different scans. Therefore, we further simulate
a case with estimation of a integrated in the control loop. The true
value is still chosen as a ¼ 0:7. Initially, â ¼ 0:6, the same as the
known but incorrect value shown in the previous cases. The same

Table 3 Gains selection

Kv KIv
Kp KIp

c Ke

1:2	 10�3 8	 10�5 8	 103 100 7	 10�3 300

Fig. 11 Closed-loop response where U�(y ) is computed from â 5 0:6 but the true a 5 0:7. (b) plots the full temperature field
evolution. (a) and (c) plot, respectively, the temperature evolution at specific spatial location x’s and the temperature distribu-
tion snapshots at specific time instance t’s. (d) shows the input response. (e) plots the evolution of cooling rate and melt pool
size. (f) shows the a posteriori spatial distribution of cooling rate and melt pool size. The area of interest for temperature con-
trol is from x 5 20 mm to x 5 80 mm.
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PI gain selection as shown in Table 3 is applied. The estimator
gains c and Ke are tuned to minimize the response time of â, and
are also included in Table 3. Simulation of the estimator PDE (28)
is conducted based on finite difference method with
L¼ 50 mm, a linear spacing of Dy ¼ 0:1 mm, and the time
increment of Dt ¼ 0:005 s. Simulated results are plotted in
Fig. 12. Convergence of â is achieved within 0.5 s. Similar
response time for Cr(t) (2.5 s) and W(t) (2 s) is demonstrated. As a
result, the control objective is well achieved in all area of interest
except for the initial portion x ¼ 20 to 25 mm.

6 Conclusion

This paper presents a PDE-based approach to the thermal con-
trol problem in laser-based manufacturing. The control problem
involves using the laser velocity and power to regulate the temper-
ature in the moving laser frame to achieve the desired perform-
ance in terms of the cooling rate and melt pool size. We first show
that the target temperature distribution corresponding to the
desired performance is globally exponentially stable under a suit-
ably chosen constant feedforward in laser velocity and power. A
passive temperature error feedback, such as a proportional feed-
back gain, counteracts noise and model uncertainty while preserv-
ing stability. The feedforward itself may be adaptively updated
resulting in an integral control term. Though the proportional-
integral feedback is robust, the desired temperature distribution
requires accurate model information. We construct an estimator
for a key model parameter, the heat transfer coefficient to the
ambient, to reduce the model dependence of the controller. Simu-
lation results are presented for both known and unknown heat
transfer coefficient to demonstrate the convergence of the cooling
rate and melt pool size to the desired values.

Our current formulation is based on the 1D PDE model, which
is a highly simplified description of the actual LAM process. In
addition to the three-dimensional nature of thermal physics, there
are other physical phenomena not addressed in the paper, such as
the melting and solidification processes (which may be modeled

using the Stefan condition [21,22]) and inaccurate material prop-
erties. The passivity based control methodology presented in this
paper lays the foundation for our future work in controlling the
LAM process in the more realistic 3D PDE model and ultimately
experimental implementation.
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Appendix A: Analytical Solution of the Steady-State

Temperature Distribution in the Laser Frame

The steady-state solution of Eq. (9) satisfies

kU�yyðyÞ þ v�U�y ðyÞ � aU�ðyÞ þ p�PðyÞ ¼ 0 (A1)

which is a nonhomogeneous second-order ODE. The homogene-
ous part has two real eigenvalues

Fig. 12 Closed-loop response with a estimation incorporated. The unknown a 5 0:7, the initial guess of which starts from
â 5 0:6. (b) plots the full temperature field evolution. (a) and (c) plot, respectively, the temperature evolution at specific spatial
location x’s and the temperature distribution snapshots at specific time instance t’s. (d) shows the input response, and the
evolution of â. (e) plots the evolution of cooling rate and melt pool size. (f) shows the a posteriori spatial distribution of cool-
ing rate and melt pool size. The area of interest for temperature control is from x 5 20 mm to x 5 80 mm.
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r1 ¼
�v� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�2 þ 4ka
p

2k
; r2 ¼

�v� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�2 þ 4ka
p

2k

The solution is the sum of the homogeneous and particular
solutions

U�ðyÞ ¼ er1yðc1 þ
ðy

�L

w1
0ðzÞ dzÞ

þer2yðc2 þ
ðy

�L

w2
0ðzÞ dzÞ (A2)

where

w01 yð Þ ¼ �
p�

k r1 � r2ð Þ
P yð Þe�r1y (A3)

w02 yð Þ ¼
p�

k r1 � r2ð Þ
P yð Þe�r2y (A4)

Substituting in Eq. (A2) the boundary condition U�ð�LÞ ¼
U�ðLÞ ¼ 0 where L is large, and noting that r1 > 0 and r2 < 0, we
get

c1 � �
ðL

�L

w1
0ðyÞdy �

ð1
�1

w1
0ðyÞdy (A5a)

c2 � �
ð�L

�L

w2
0ðyÞdy ¼ 0 (A5b)

If P is the delta function

U� yð Þ ¼
p�

k r1 � r2ð Þ
1 �yð Þer1y þ 1 yð Þer2y� �

(A6)

where 1ð�Þ denotes the Heaviside function.
The solution for rectangular power distribution P is

U� yð Þ¼

p� e
r1D

2 �e�
r1D

2

� �
kDr1 r1�r2ð Þ

er1y; y<�D

2

p�

kD r1�r2ð Þ
1�er1 y�D

2ð Þ
r1

þer2 yþD
2ð Þ�1

r2

 !
; �D

2
�y�D

2

p� e
r2D

2 �e�
r2D

2

� �
kDr2 r1�r2ð Þ

er2y; y>
D

2

8>>>>>>>>>><
>>>>>>>>>>:

(A7)

Note that when D! 0, Eq. (A7) approaches Eq. (A6). The solu-
tion for the Gaussian power distribution P is

U� yð Þ ¼
p�

2k r1 � r2ð Þ

(
ae

r2
2
r2

2
þr2yerf

yþ r2r2ffiffiffi
2
p

r

 !8<
:

�e
r2
1
r2

2
þr1y erf

yþ r2r1ffiffiffi
2
p

r

 !
� 1

" #)
(A8)

where erfð�Þ is the error function.

Appendix B: Analytical Expression of (Cr�;W�) as Func-

tions of (v�; p�)

Given U�ðyÞ from Appendix A, we can relate the steady-state
performance measures ðCr�;W�Þ to the inputs ðv�; p�Þ. We will
also explicitly highlight the dependence on the heat transfer

coefficient a, as it is typically the least determined component in
the model. We will consider the case that PðyÞ ¼ dðyÞ only, to
obtain the analytical relationship. From Eq. (A6), we have

U� ycrð Þ ¼
p�

k r1 � r2ð Þ
er1ycr ¼ Tcr

From Eq. (20), the steady-state cooling rate is given by

Cr� ¼ U�y yð Þjy¼ycr
v� ¼ p�r1

k r1 � r2ð Þ
er1ycr v� ¼ r1v�Tcr

¼ Tcr

2k
v� �v� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�2 þ 4ka

p� � (B1)

Solving v�, we obtain

v� ¼
ffiffiffiffiffiffi
k

Tcr

r
Cr�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aTcr � Cr�
p :¼ f a;Cr�ð Þ (B2)

which implies that Cr� must be less than aTcr (sufficiently slow
cooling rate) in order for a feasible velocity to exist. For the melt
pool size, first solve for the boundary locations of the melt pool

U�ðy‘Þ ¼ U�ðyrÞ ¼ Tmelt; yr > y‘

If there is no solution, then W� ¼ 0. Substituting in Eq. (A6), we
have

p�

k r1 � r2ð Þ
er1y‘ ¼ p�

k r1 � r2ð Þ
er2yr ¼ Tmelt

This implies that

r1y‘ ¼ r2yr

Then

W� ¼ yr � y‘ ¼
r1 � r2

r1r2

ln
Tmeltk r1 � r2ð Þ

ps

� �
(B3)

Solving for p�, we obtain

p� ¼ Tmelt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�2 þ 4ka

p
exp

aW�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�2 þ 4ka
p
� �

:¼ g a; v�;W�ð Þ
(B4)

Appendix C: Eigen-Solution of the Laplace Operator

Consider the eigenvalue problem corresponding to the Laplace
operator

/xx ¼ �k/; /ð0Þ ¼ /ð‘Þ ¼ 0 (C1)

Since the Laplace operator is self-adjoint and negative semidefin-
ite, its spectrum consists of nonpositive eigenvalues with eigen-
functions forming an orthonormal basis in L2ð0; ‘Þ [34]. The
eigen-solution is given by solving Eq. (C1) and normalizing /

kn ¼
np
2‘

� �2

; n � 0

/n xð Þ ¼

1ffiffiffiffiffi
2‘
p sin

np xþ ‘ð Þ
2‘

� �
n > 0

1ffiffiffiffiffi
2‘
p n ¼ 0

8>>><
>>>:

(C2)
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