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Well-posedness and exact controllability of
the mass balance equations for an
extrusion process
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In this paper, we study the well-posedness and exact controllability of a physical model for an extrusion process in the
isothermal case. The model expresses the mass balance in the extruder chamber and consists of a hyperbolic partial dif-
ferential equation (PDE) and a nonlinear ordinary differential equation (ODE) whose dynamics describes the evolution of
a moving interface. By suitable change of coordinates and fixed point arguments, we prove the existence, uniqueness,
and regularity of the solution and finally, the exact controllability of the coupled system. Copyright © 2015 John Wiley &
Sons, Ltd.
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1. Introduction

The analysis of free boundary problems has been an active subject in the last decades, and their mathematical understanding continues
to be an important interdisciplinary topic for various engineering applications. Representative complex physical systems describing
biological phenomena and reaction diffusion processes such as Stefan problems in crystal growth processes are still calling for many
open questions related to their exact controllability and the design of highly efficient output feedback control laws for stabilization
purposes. Among these challenging problems, one can mention the swelling nanocapsules studied in [1], the lyophilization process
applied to pharmaceutical industry [2, 3], the cooking processes describing the volume change in food material [4], the mixing systems
(model of torus reactor including a well-mixed zone and a transport zone), and the diesel oxidation catalyst presented in [5].

In this paper, we consider the well-posedness and exact controllability of the Cauchy problem for a physical model of the extrusion
process, which describes the mass transport phenomena in an isothermal extruder chamber. Mathematically, the process is described
by a hyperbolic PDE defined on a time-varying domain. The dynamics of the spatial domain is governed by an ODE expressing the
conservation of mass in the extruder, and the PDE expresses the convection phenomenon due to the rotating screw. More detailed
description of the model is given in Section 2. We mention that the first result concerning the mathematical analysis of the extrusion
model as transport equations coupled via complementary time-varying domains is proposed in [6], where the well-posedness for the
linearized model of the extruder is obtained by using perturbation theory on the linear operator.

The key point is to find a suitable change of coordinates, which enables to transform the free boundary problem to a system defined
on a fixed domain. Let us emphasize that this method has been introduced by Li et al. to study the free boundary problems of quasi-
linear hyperbolic systems [7, 8], and now, it is rather standard. Our proof of the well-posedness results (Theorem 3.1) of the Cauchy
problem for the normalized system relies on the characteristic method and the fixed point arguments. The only difference is that we
consider the (piecewise) H2 solution (Theorem 3.2) instead of the (piecewise) C1 solution as in [7, 8], so that the theory on Sobolev
spaces can be applied. We remark that the H2-regularity of the solution is useful when one considers the asymptotic stabilization of the
corresponding closed-loop system with feedback controls [9]. In this context, the stabilization of a non-isothermal extrusion process
including the temperature and the moisture content dynamics is investigated in [10].
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The control problems for hyperbolic conservation laws have been widely studied for a long time. For controllability of linear hyper-
bolic systems, one can see the important survey [11]. The controllability of nonlinear hyperbolic equations (or systems) is studied
in [12–16]. Moreover, [17] provides a comprehensive survey of controllability and stabilization in PDEs that also includes nonlinear
conservation laws. The idea to prove Theorem 3.3 is to construct a solution to (2.2)–(2.4), which also satisfies the final conditions [15].
The way of such construction is based on the controllability result of the linearized system together with fixed point arguments see (for
example, [18]).

The organization of this paper is as follows. First, in Section 2, we give a description of the extrusion process model, which is derived
from conservation laws. The main results (Theorems 3.1–3.3) concerning the well-posedness, regularity, and the controllability of the
normalized system are presented in Section 3, while their proofs are given in Sections 4–6, respectively.

2. Description of the extrusion process model

Extruders are designed to process highly viscous materials. They are mainly used in the chemical industries for polymer processing as
well as in the food industries. An extruder is made of a barrel, the temperature of which is regulated. One or two Archimedean screws
are rotating inside the barrel. The extruder is equipped with a die where the material comes out of the process (Figure 1).

In an extruder, the net flow at the die exit is mainly due to the flow of the material in the screw axis direction. The die resistance
influences highly the transport along the extruder and induces an accumulation phenomenon towards the down barrel direction. The
accumulation of the material permits us to represent the mass balance in the extruder using the filling ratio along its screw channel.
More precisely, the spatial domain of the extruder might be partitioned into a fully filled zone (FFZ) and a partially filled zone (PFZ). The
flow in the FFZ depends on the pressure gradient, which appears in this region because of the die restriction. The PFZ corresponds to
a conveying region that is submitted to the constant atmospheric pressure, and the transport velocity of the material depends only on
the screw speed and pitch. These two zones are coupled by an interface that is located at the spatial coordinate where the pressure
gradient changes from zero to a nonzero value. Basically, the moving interface evolves as a function of the difference between the feed
and die rates. In the sequel, the spatial domain of the extruder will be taken as the real interval Œ0, L�, where L > 0 is the length of the
extruder. Let us denote by l.t/ 2 Œ0, L� the position of the thin interface; the domain of the PFZ is then Œ0, l.t/�, and the FFZ is defined
on Œl.t/, L� (Figure 1).

Considering the following change of variables [19]:

x 7! y D
x

l.t/
in PFZ and x 7! y D

x � l.t/

L � l.t/
in FFZ (2.1)

respectively, the time-varying domains Œ0, l.t/� and Œl.t/, L� can be transformed to the fixed domain Œ0, 1� in space. For the sake of
simplicity, we still denote by x the space variable instead of y. More precisely, we consider the problem for the corresponding
normalized system defined on .0, T/ � .0, 1/.

Defining the filling ratio along the PFZ spatial domain, namely, fp.t, x/ as a dynamical variable [20, 21], then the mass balance in this
region is written as follows: 8̂<

:̂
@tfp.t, x/C ˛p@x fp.t, x/ D 0, in RC � .0, 1/,

fp.0, x/ D f 0
p .x/, in .0, 1/,

fp.t, 0/ D Fin.t/
�oVeff N.t/ , in RC,

(2.2)

where

˛p.x, N.t/, l.t/, fp.t, 1// D
�N.t/ � xF.l.t/, N.t/, fp.t, 1//

l.t/
(2.3)

and ˛p is the transport velocity of the material, � is the screw pitch, Fin denotes the feed rate, �0 is the melt density, Veff is the effective
volume, and N.t/ is the rotation speed of the screw. F is the dynamics of the moving interface described by Equations (2.4) and (2.5).
The interface motion is generated by the gradient of pressure, which appears in the FFZ [20–23], and under the assumption of constant
viscosity along the extruder (the isothermal case), its evolution is given by the following:

Figure 1. Schematic description of an extruder. FFZ, fully filled zone; PFZ, partially filled zone.
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(
Pl.t/ D F.l.t/, N.t/, fp.t, 1//, in RC,

l.0/ D l0,
(2.4)

where

F.l.t/, N.t/, fp.t, 1// D N.t/g.l.t/, fp.t, 1//, (2.5)

with

g.l.t/, fp.t, 1// D
�Kd .L � l.t//

ŒB�0 C Kd.L � l.t//� .1 � fp.t, 1//
�

�fp.t, 1/

1 � fp.t, 1/
. (2.6)

In (2.6), Kd denotes the die conductance, and B is the geometric parameter.
In the whole paper, unless otherwise specified, we always assume that l0 2 .0, L/, f 0

p 2 W1,1.0, 1/, Fin, N 2 L1.0, T/, Fin=N 2
W1,1.0, T/. For the sake of simplicity, we denote from now on kfkL1 (kfkW1,1 , kfkL2 , resp.) as the L1 (W1,1, L2, resp.) norm of the
function f with respect to its variables.

3. Main results

In this section, we present the main results on the well-posedness and exact controllability of the coupled systems (2.2)–(2.4); we have
the following two theorems.

Theorem 3.1
Let T > 0 and .le, Ne, fpe/ be a constant equilibrium, that is,

F.le, Ne, fpe/ D 0 (3.1)

with 0 < fpe < 1, 0 < le < L. Assume that the compatibility condition at .0, 0/ holds

Fin.0/

�0Veff N.0/
D f 0

p .0/. (3.2)

Then, there exists "0 > 0 (depending on T) such that for any " 2 .0, "0�, if

jl0�lej C kf 0
p .�/ � fpekW1,1 C k

Fin.�/

�0Veff N.�/
� fpekW1,1 C kN.�/�NekL1�", (3.3)

Cauchy problems (2.2)–(2.4) admit a unique solution .l, fp/2W1,1.0, T/�W1,1..0, T/�.0, 1//, and the following estimates hold:

kl.�/ � lekW1,1 � C"0 � ", (3.4)

kfp.�, �/ � fpekW1,1 � C"0 � ", (3.5)

where C"0 is a constant depending on "0 but independent of ".

Theorem 3.2

Under the assumptions of Theorem 3.1, we assume furthermore that f 0
p .�/ 2 H2.0, 1/,

Fin.�/

�0Veff N.�/
2 H2.0, T/, and the compatibility

condition at .0, 0/ holds

�
f 0

p

�
x
.0/C

l.0/

�N.0/
�

d

dt

�
Fin.t/

�0Veff N.t/

� ˇ̌̌
tD0
D 0. (3.6)

Then, there exists "0 > 0 (depending on T) such that for any " 2 .0, "0�, if

jl0�lej C kf 0
p .�/�fpekH2.0,1/ C k

Fin.�/

�0Veff N.�/
� fpekH2.0,T/ C kN.�/�NekL1�", (3.7)

Cauchy problems (2.2)–(2.4) have a unique solution .l, fp/ 2 W1,1.0, T/ � C0.Œ0, T�; H2.0, 1//with the additional estimate

kfp.�, �/ � fpekC0.Œ0,T�;H2.0,1// � C"0 � ", (3.8)
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where C"0 is a constant depending on "0 but independent of ".

Remark 3.1
The solution in Theorem 3.1 or in Theorem 3.2 is often called semi-global solution because it exists on any preassigned time interval
Œ0, T� provided that .l, fp/ has some kind of smallness (depending on T); see [24, 25].

Remark 3.2
We have the hidden regularity that fp 2 C0.Œ0, 1�; H2.0, T// in Theorem 3.2 (see [26, 27] for the idea of proof ).

The problem of exact controllability for Cauchy problems (2.2)–(2.4) can be described as follows: for any given initial data .l0, f 0
p .x//,

any final data .l1, f 1
p .x//, to find a time T and controls Fin.t/ and N.t/ such that the solution to Cauchy problems (2.2)–(2.4) satisfies

l.T/ D l1, (3.9)

fp.T , x/ D f 1
p .x/. (3.10)

Our result is the following theorem on local controllability in the sense that the initial and final data are both close to the given
equilibrium determined by (3.1).

Theorem 3.3
Let

Te :D
le

�Ne
(3.11)

be the critical control time. Then, for any T > Te, there exists �1 > 0 suitably small such that, for any � 2 .0, �1�, l0, l1 2 .0, L/, and
f 0

p , f 1
p 2 W1,1.0, 1/with

jl0�lej C jl
1 � lej C kf 0

p .�/ � fpekW1,1 C kf 1
p .�/ � fpekW1,1 � �, (3.12)

there exist N 2 L1.0, T/ and Fin 2 L1.0, T/ satisfying

k
Fin.�/

�0Veff N.�/
� fpekW1,1 C kN.�/�NekL1 � C�1 � �, (3.13)

such that the weak solution .l.t/, fp.t, x// to Cauchy problems (2.2)–(2.4) satisfies the final conditions (3.9) and (3.10). Here, C�1 is a
constant depending on �1 but independent of �.

4. Proof of Theorem 3.1

In order to conclude Theorem 3.1, it suffices to prove the following lemma on local well-posedness of Cauchy problems (2.2)–(2.4).

Lemma 4.1
There exist "1 > 0 and ı > 0 suitably small, such that for any " 2 .0, "1�, l0 2 .0, L/, f 0

p 2 W1,1.0, 1/, Fin=N 2 W1,1.0, T/with

jl0�lej C kf 0
p .�/�fpekW1,1Ck

Fin.�/

�0Veff N.�/
�fpekW1,1CkN.�/�NekL1�", (4.1)

Cauchy problems (2.2)–(2.4) admit a unique local solution on Œ0, ı�, which satisfies the following estimates:

jl.t/ � lej � C"1 � ", 8t 2 Œ0, ı�, (4.2)

kfp.t, �/ � fpekW1,1 � C"1 � ", 8t 2 Œ0, ı�, (4.3)

where C"1 is a constant depending on "1 but independent of ".

Let us first show how to conclude Theorem 3.1 from Lemma 4.1. By Lemma 4.1, we take "2 2 .0, "1� such that C"1 � "2 � "1. Then
for any " 2 .0, "2� and any initial-boundary data such that (4.1) holds, Cauchy problems (2.2)–(2.4) admit a unique solution on Œ0, ı�.
Furthermore, one has

jl.ı/ � lej � C"1 � " � "1, (4.4)

kfp.ı, �/ � fpekW1,1 � C"1 � " � "1. (4.5)
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By taking .l.ı/, fp.ı, �// as new initial data and applying Lemma 4.1 on Œı, 2ı�, the solution of Cauchy problems (2.2)–(2.4) is extended to
Œ0, 2ı�. For fixed T > 0, we can extend the local solution to Cauchy problems (2.2)–(2.4) to Œ0, T� eventually by reducing the value of "0

and applying Lemma 4.1 in finite times (at most ŒT=ı�C 1 times). Therefore, to conclude Theorem 3.1, it remains to prove Lemma 4.1.

Proof of Lemma 4.1
The proof is divided into four steps.

Step 1. Existence and uniqueness of .l.�/, fp.�, 1// by fixed point argument.
Let "1 > 0 be such that

0 < "1 < minfle, L � le, fpe, 1 � fpeg. (4.6)

Denote

kFkW1,1 :D
X
j˛j�1

ess sup
0<x1<L

Ne�"1<x2<NeC"1
0<x3<1

jD˛F.x1, x2, x3/j, (4.7)

‰.t/ :D .l.t/, fp.t, 1//, t 2 Œ0, T�. (4.8)

For any given ı > 0 small enough (to be chosen later), we define a domain candidate as a closed subset of C0.Œ0, ı�/ with respect to
C0 norm:

�ı,"1 :D
˚
‰ 2 C0.Œ0, ı�/j‰.0/ D

�
l0, f 0

p .1/
�

, k‰.�/ � .le, fpe/kC0.Œ0,ı�/ � "1

�
. (4.9)

We denote by �.s; t, x/, with .s, �.s; t, x// 2 Œ0, t�� Œ0, 1�, the characteristic curve passing through the point .t, x/ 2 Œ0, ı�� Œ0, 1� (Figure 2),
that is, 8<

:
d�.s; t, x/

ds
D ˛p

�
�.s; t, x/, N.s/, l.s/, fp.s, 1/

�
,

�.t; t, x/ D x.
(4.10)

Let us define a map F :D .F1,F2/, where F : �ı,"1 ! C0.Œ0, ı�/,‰ 7! F.‰/ as

F1.‰/.t/ :D l0 C

Z t

0
F
�

l.s/, N.s/, fp.s, 1/
�

ds, (4.11)

F2.‰/.t/ :D f 0
p .�.0; t, 1//. (4.12)

Solving the linear ODE (4.10) with ˛p given by (2.3), one easily obtains for all ı small and all 0 � s � t � ı that

�.s; t, 1/ D e
R t

s
F.l.�/,N.�/,fp.� ,1//

l.�/ d� �

Z t

s

�N.�/

l.�/
� e
R �

s
F.l.s/,N.s/,fp.s,1//

l.s/ ds d� . (4.13)

Figure 2. The characteristics �.s; t, x/ and ˇ.t, x/, �.t, x/.
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It is obvious that F maps into�ı,"1 itself if

0 < ı < min

�
T ,

le � "1

�.Ne C "1/
,

le � "1

kFkW1,1
,

L � le � "1

kFkW1,1

�
, (4.14)

Now, we prove that, if ı is small enough, F is a contraction mapping on�ı,"1 with respect to the C0 norm. Let‰ D .l, fp/, N‰ D .Nl, Nfp/ 2

�ı,"1 . We denote by N�.s; t, x/ the corresponding characteristic curve passing through .t, x/:

8<
:

d N�.s; t, x/

ds
D ˛p

�
N�.s; t, x/, N.s/, Nl.s/, Nfp.s, 1/

�
,

N�.t; t, x/ D x.
(4.15)

Similarly as (4.13), one has for all ı small and all 0 � s � t � ı that

N�.s; t, 1/ D e
R t

s
F.Nl.�/,N.�/,Nfp.� ,1//

Nl.�/
d�
�

Z t

s

�N.�/
Nl.�/

� e
R �

s
F.Nl.s/,N.s/,Nfp.s,1//

Nl.s/
ds d� . (4.16)

Therefore, it holds for all t 2 Œ0, ı� that

jF1. N‰/.t/ � F1.‰/.t/j D
ˇ̌̌ Z t

0
F.Nl.s/, N.s/, Nfp.s, 1// ds �

Z t

0
F.l.s/, N.s/, fp.s, 1// ds

ˇ̌̌
� ıkFkW1,1k N‰ �‰kC0.Œ0,ı�/.

(4.17)

On the other hand, it follows from (4.12), (4.13), and (4.16) that for all t 2 Œ0, ı�,

jF2. N‰/.t/ � F2.‰/.t/j

Djf 0
p .
N�.0; t, 1// � f 0

p .�.0; t, 1//j

�kf 0
pxkL1

�ˇ̌̌
e
R t

0
F.Nl.�/,N.�/,Nfp.� ,1//

Nl.�/
d�
� e

R t
0

F.l.�/,N.�/,fp.� ,1//
l.�/ d�

ˇ̌̌

C

Z t

0

ˇ̌̌ �N.�/
Nl.�/

� e
R �

0
F.Nl.s/,N.s/,Nfp.s,1//

Nl.s/
ds
�
�N.�/

l.�/
� e
R �

0
F.l.s/,N.s/,fp.s,1//

l.s/ ds
ˇ̌̌

d�

�
.

By (4.7) and the fact that‰, N‰ 2 �ı,"1 and l.t/ � le � "1 > 0, jN.t/j � Ne C "1, it follows that for all t 2 Œ0, ı�,

jF2. N‰/.t/ � F2.‰/.t/j � Cıkf 0
p .�/ � fpekW1,1k N‰ �‰kC0.Œ0,ı�/, (4.18)

where C > 0 is a constant independent of . N‰,‰/. Finally, combining (4.17) and (4.18), we can choose ı small enough such that

kF. N‰/ � F.‰/kC0.Œ0,ı�/ �
1

2
k N‰ �‰kC0.Œ0,ı�/. (4.19)

Banach fixed point theorem implies the existence of the unique fixed point .l.�/, fp.�, 1// of the mapping F:‰ D F.‰/ in�ı,"1 .

Step 2. Construction of a solution by characteristic method.
With the existence of .l.�/, fp.�, 1// and ı > 0 by step 1, we can construct a solution to Cauchy problems (2.2)–(2.4). For every .t, x/

in Œ0, ı� � Œ0, 1�, we still denote by �.s; t, x/, with .s, �.s; t, x// 2 Œ0, t� � Œ0, 1�, the characteristic curve passing through the point .t, x/;
see (4.10). Because the velocity function ˛p is positive, the characteristic �.s; t, x/ intersects the x-axis at point .0,ˇ.t, x//with ˇ.t, x/ D
�.0; t, x/ if 0 � �.t; 0, 0/ � x � 1; the characteristic �.s; t, x/ intersects the t-axis at point .	.t, x/, 0/ with �.	.t, x/; t, x/ D 0 if 0 � x �
�.t; 0, 0/ (Figure 2). Moreover, we have (see [8, Lemma 3.2 and its proof, pp. 90–91] for a more general situation)

@	.t, x/

@x
D
�l.	.t, x//

�N.	.t, x//
e
R t
�.t,x/

F.l.�/,N.�/,fp.� ,1//
l.�/ d� , (4.20)

@ˇ.t, x/

@x
D e

R t
0

F.l.�/,N.�/,fp.� ,1//
l.�/ d� . (4.21)

We define fp by

fp.t, x/ D

8<
:

Fin.	.t, x//

�0Veff N.	.t, x//
, if 0 � x � �.t; 0, 0/ � 1, 0 � t � ı,

f 0
p .ˇ.t, x//, if 0 � �.t; 0, 0/ � x � 1, 0 � t � ı.

(4.22)
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Then it is easy to check that .l, fp/ 2 W1,1.0, ı/ � W1,1..0, ı/ � .0, 1// under the compatibility condition (3.2), and .l, fp/ is indeed a
solution to Cauchy problems (2.2)–(2.4).

Step 3. Uniqueness of the solution.
Assume that Cauchy problems (2.2)–(2.4) have two solutions .l, fp/, .Nl, Nfp/ on Œ0, ı� � Œ0, 1�. It follows that .l.�/, fp.�, 1// D .Nl.�/, Nfp.�, 1//

because they are both the fixed point of the mapping F: ‰ D F.‰/ in �ı,"1 . This fact implies that the characteristics �.�; t, x/ and
N�.�; t, x/ coincide with each other and therefore so do the solutions fp and Nfp by characteristic method.

Step 4. A priori estimate on the local solution.
By definition of fp and assumption (4.1), it is clear that for all t 2 Œ0, ı�,

kfp.t, �/ � fpekL1 � ". (4.23)

Thanks to (2.4), (3.1), (4.23), and assumption (4.1), we obtain for all t 2 Œ0, ı� that

jPl.t/j DjF
�

l.t/, N.t/, fp.t, 1/
�
� F

�
le, Ne, fpe

�
j

�kFkW1,1 .jl.t/ � lej C jN.t/ � Nej C jfp.t, 1/ � fpej/.

�kFkW1,1 jl.t/ � lej C 2"kFkW1,1 ,

which yields (4.2) from (4.1) and Gronwall’s inequality. On the other hand, from (4.22),

			 @fp

@x

			
L1
�
			 @

@x

�
Fin.	.t, x//

�0Veff N.	.t, x//

�			
L1
C
			 @

@x
f 0

p .ˇ.t, x//
			

L1

�
			 Fin.�/

�0Veff N.�/
� fpe

			
W1,1

			 @	
@x

			
L1
C
			 f 0

p .�/ � fpe

			
W1,1

			 @ˇ
@x

			
L1

.

(4.24)

Combining (4.20), (4.21), (4.24), and assumption (4.1), we obtain (4.3), which concludes the proof of Lemma 4.1.

5. Proof of Theorem 3.2

Before proving Theorem 3.2, let us recall a classical result on Cauchy problem of the following general linear transport equation:

8<
:

ut C a.t, x/ux D b.t, x/uC c.t, x/, .t, x/ 2 .0, T/ � .0, 1/,
u.0, x/ D u0.x/, x 2 .0, 1/,
u.t, 0/ D h.t/, t 2 .0, T/,

(5.1)

where a.t, x/ > 0, a, ax , b 2 L1..0, T/ � .0, 1//, and c 2 L2..0, T/ � .0, 1//.
We recall from [17, Section 2.1] the definition of a weak solution to Cauchy problem (5.1).

Definition 5.1
Let T > 0, u0 2 L2.0, 1/, and h 2 L2.0, T/ be given. A weak solution of Cauchy problem (5.1) is a function u 2 C0.Œ0, T�; L2.0, 1// such
that for every 	 2 Œ0, T�, every test function ' 2 C1.Œ0, T� � Œ0, 1�/ such that '.t, 1/ D 0, 8t 2 Œ0, T�, one has

�

Z �
0

Z 1

0
.uŒ@t' C a@x' C .ax C b/'�C c'/ dx dtC

Z 1

0
u.	 , �/'.	 , �/ dx

�

Z 1

0
u0'.0, �/ dx �

Z �
0

ha.�, 0/'.�, 0/ dt D 0.

(5.2)

We have the following lemma.

Lemma 5.1
Let T > 0, u0 2 L2.0, 1/, and h 2 L2.0, T/ be given. Then, Cauchy problem (5.1) has a unique weak solution u 2 C0.Œ0, T�; L2.0, 1//, and
the following estimate holds:

kukC0.Œ0,T�;L2.0,1// � C.ku0kL2.0,1/ C khkL2.0,T/ C kckL2..0,T/�.0,1///, (5.3)

where C D C.T , kakL1..0,T/�.0,1//, kaxkL1..0,T/�.0,1//, kbkL1..0,T/�.0,1/// is a constant independent of u0, h, c.

For the proof of Lemma 5.1, one can refer to [8] for classical solution or [28, Theorem 23.1.2, Page 387] for Cauchy problem on R
without boundary.
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Proof of Theorem 3.2
By Theorem 3.1 and Lemma 5.1, it suffices to prove that the systems of fpxx satisfy all the assumptions of Lemma 5.1.

Differentiating (2.2) with respect to x once and twice gives us successively that

8̂̂̂
<
ˆ̂̂:
@tfpx .t, x/C ˛p.t, x/@x fpx .t, x/ D �˛px .t, x/fpx .t, x/, in .0, T/ � .0, 1/,

fpx .0, x/ D f 0
px
.x/, in .0, 1/,

fpx .t, 0/ D
�l.t/

�N.t/
�

d

dt

�
Fin.t/

�0Veff N.t/

�
, in .0, T/,

(5.4)

and 8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

@tfpxx .t, x/C ˛p.t, x/@x fpxx .t, x/ D �2˛px .t, x/fpxx .t, x/, in .0, T/ � .0, 1/,

fpxx .0, x/ D f 0
pxx
.x/, in .0, 1/,

fpxx .t, 0/ D
�l.t/

�N.t/



F.l.t/, N.t/, fp.t, 1//

�N.t/
�

d

dt

�
Fin.t/

�0Veff N.t/

�

�
d

dt

�
l.t/

�N.t/
�

d

dt

�
Fin.t/

�0Veff N.t/

���
, in .0, T/,

(5.5)

with

˛p.t, x/ D
�N.t/ � xF.l.t/, N.t/, fp.t, 1//

l.t/
, ˛px .t, x/ D

�F.l.t/, N.t/, fp.t, 1//

l.t/
. (5.6)

From the assumptions that f 0
p 2 H2.0, 1/,

Fin.�/

�0Veff N.�/
2 H2.0, T/ and the compatibility conditions (3.2) and (3.6), one easily concludes

Theorem 3.2 by applying Lemma 5.1 to Cauchy problem (5.5).

6. Proof of Theorem 3.3

The idea to prove Theorem 3.3 is to construct a solution to Cauchy problems (2.2)–(2.4), which also satisfies the final conditions. The
way of such construction is based on the controllability result of the linearized system together with fixed point arguments [18].

For any fixed initial data
�

l0, f 0
p .x/

�
and final data

�
l1, f 1

p .x/
�

close to the equilibrium .le, fpe/, we define a domain as a closed subset of
C0.Œ0, T�/with respect to C0 norm:

�"1,T :D
˚
ˆ 2 C0.Œ0, T�/jˆ.0/ D

�
l0, f 0

p .1/
�

,ˆ.T/ D
�

l1, f 1
p .1/

�
, kˆ.�/ � .le, fpe/kC0.Œ0,T�/ � "1

�
,

where the constant "1 > 0 is determined by (4.6). We study the exact controllability for the linearized system deduced from
Equations (2.2)–(2.4), replacing .l.t/, fp.t, 1// by .a.t/, b.t// in functions F and ˛p:

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

Pl.t/ D Fa,b.t/, in .0, T/,

@tfp.t, x/C ˛a,b
p .t, x/@x fp.t, x/ D 0, in .0, T/ � .0, 1/,

l.0/ D l0, fp.0, x/ D f 0
p .x/, in .0, 1/,

fp.t, 0/ D
Fa,b

in .t/

�oVeff Na,b.t/
, in .0, T/,

(6.1)

where

Fa,b.t/ D Na,b.t/ga,b.t/, (6.2)

ga,b.t/ D
�Kd .L � a.t//

ŒB�0 C Kd.L � a.t//� .1 � b.t//
�

�b.t/

1 � b.t/
, (6.3)

˛a,b
p .t, x/ D

�Na,b.t/ � xFa,b.t/

a.t/
. (6.4)

By assumption T > Te, it is possible to find controls Na,b.t/ and Fa,b
in .t/ such that the solution of (6.1) satisfies (3.9) and (3.10).

For anyˆ D .a, b/ 2 �"1,T , we choose the control function Na,b.t/ as

Na,b.t/ :D
l1 � l0

T
�

1

ga,b.t/
, t 2 Œ0, T�, (6.5)

such that

Fa,b.t/ D
l1 � l0

T
, t 2 Œ0, T�, (6.6)
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thus, l.t/ is a linear function of t:

l.t/ D l0 C
l1 � l0

T
t, t 2 Œ0, T�. (6.7)

By assumption (3.12), it follows then

jl.t/ � lej D j

�
1 �

t

T

� �
l0 � le

�
C

t

T

�
l1 � le

�
j � 2� � 2�1. (6.8)

Next, let us construct the desired control Fa,b
in .t/. For this purpose, we shall give the expression of fp.t, x/ by characteristic method. We

denote by �a,b.s; t, x/ the characteristic passing through .t, x/ 2 Œ0, T� � Œ0, 1�:

8<
:

d�a,b.s; t, x/

ds
D ˛a,b

p .s, �a,b.s; t, x// D
�Na,b.s/ � �a,b.s; t, x/Fa,b.s/

a.s/
,

�a,b.t; t, x/ D x.
(6.9)

Suppose that the characteristic �a,b.s; 0, 0/ intersects the line x D 1 at .ta,b
0 , 1/. Then for every t 2 Œ0, ta,b

0 �, the characteristic passing
through .t, 1/ intersects with x-axis at .0,ˇa,b.t//; for every t 2 .ta,b

0 , T�, the characteristic passing through .t, 1/ intersects with t-axis at
.	a,b.t/, 0/. The characteristic passing through .T , 1/ intersects with t-axis at .ta,b

1 , 0/ (Figure 3). Hence, we have

�a,b
�

ta,b
0 ; 0, 0


D 1, �a,b.0; t, 1/ D ˇa,b.t/, �a,b.	a,b.t/; t, 1/ D 0, �a,b

�
ta,b

1 ; T , 1

D 0.

Solving (6.9) and using (6.4) and (6.6), we obtain

e
R ta,b

0
0

l1�l0
Ta.�/ d� �

Z ta,b
0

0

�Na,b.�/

a.�/
� e
R �

0
l1�l0
Ta.s/ ds d� D 1, (6.10)

e
R t

0
l1�l0
Ta.�/ d� �

Z t

0

�Na,b.�/

a.�/
� e
R �

0
l1�l0
Ta.s/ ds d� D ˇa,b.t/, (6.11)

e
R t
�a,b.t/

l1�l0
Ta.�/ d�

�

Z t

�a,b.t/

�Na,b.�/

a.�/
� e
R �
�a,b.t/

l1�l0
Ta.s/ ds d� D 1, (6.12)

Figure 3. The characteristics �a,b.s; t, x/ and ta,b
0 , ˇ a,b.t/, �a,b.t/, ta,b

1 .
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e

R T

ta,b
1

l1�l0
Ta.�/ d�

�

Z T

ta,b
1

�Na,b.�/

a.�/
� e

R �
ta,b
1

l1�l0
Ta.s/ ds

d� D 1. (6.13)

We define the control function Fa,b
in .t/ as follows:

Fa,b
in .t/ D

8<
:

h.t/�0Veff Na,b.t/, t 2 Œ0, ta,b
1 �,

f 1
p .�

a,b.T ; t, 0//�0Veff Na,b.t/, t 2
h

ta,b
1 , T

i
,

(6.14)

where h.t/ is any artificial W1,1 function satisfying

kh.�/ � fpekW1,1 � �1 (6.15)

and the following compatibility conditions:

h.0/ D f 0
p .0/, h

�
ta,b

1


D f 1

p .1/. (6.16)

Inspired by (4.22), we define a map F :D .F1,F2/ : �"1,T ! C0.Œ0, T�/,ˆ 7! F.ˆ/ as

F1.ˆ/.t/ :D l.t/ D l0 C
l1 � l0

T
t, t 2 Œ0, T�, (6.17)

F2.ˆ/.t/ :D

8<
:

f 0
p .ˇ

a,b.t//, t 2
h

0, ta,b
0


,

h.	a,b.t//, t 2
�

ta,b
0 , T

i
,

(6.18)

where ta,b
0 , ˇa,b.t/, and 	a,b.t/ are defined by (6.10), (6.11), and (6.12), respectively.

Now, we prove that F is a contraction mapping on �"1,T provided that �1 > 0 is small. Obviously, the existence of the fixed point
implies the existence of the desired control to the original nonlinear controllability problem.

Let �1 � "1=2. By (3.12), (6.8), (6.15), (6.17), and (6.18), F.ˆ/ 2 �"1,T for allˆ 2 �"1,T .
For any N̂ D .Na, Nb/ 2 �"1,T , we denote by � Na,Nb.s; t, x/ the characteristic passing through .t, x/ 2 Œ0, T�� Œ0, 1� as in (6.9) upon replacing

a, b by Na, Nb. Correspondingly, we define tNa,Nb
0 , ˇNa,Nb.t/, 	 Na,Nb.t/, and tNa,Nb

1 as in (6.10), (6.11), (6.12), and (6.13) upon replacing a, b by Na, Nb.
By definition of F D .F1,F2/ in (6.17) and (6.18), we obtain F1. N̂ / � F1.ˆ/, and thus,

kF. N̂ / � F.ˆ/kC0.Œ0,T�/ D kF2. N̂ / � F2.ˆ/kC0.Œ0,T�/ D sup
t2Œ0,T�

j.F2. N̂ / � F2.ˆ//.t/j.

Without loss of generality, we may assume that tNa,Nb
0 > ta,b

0 . Hence, we need to estimate the point-wisely jF2. N̂ /.t/�F2.ˆ/.t/j on the

time interval
h

0, ta,b
0

i
,
h

ta,b
0 , tNa,Nb

0

i
, and

h
tNa,Nb

0 , T
i

, respectively.

For any given t 2
h

0, ta,b
0

i
, by (3.12) and (6.18), we have

j.F2. N̂ / � F2.ˆ//.t/j D
ˇ̌̌

f 0
p .ˇ
Na,Nb.t// � f 0

p .ˇ
a,b.t//

ˇ̌̌
�kf 0

pxkL1 jˇ
Na,Nb.t/ � ˇa,b.t/j

��1jˇ
Na,Nb.t/ � ˇa,b.t/j.

By (6.11), it is easy to obtain

jˇNa,Nb.t/ � ˇa,b.t/j � C
�
kNa � akC0.Œ0,T�/ C kNb � bkC0.Œ0,T�/

�
� Ck N̂ �ˆkC0.Œ0,T�/.

Here and hereafter, we denote by C various constants that are independent of . N̂ ,ˆ/. Therefore,

sup
t2Œ0,ta,b

0 �

j.F2. N̂ / � F2.ˆ//.t/j � C�1k N̂ �ˆkC0.Œ0,T�/. (6.19)

For any given t 2 ŒtNa,Nb
0 , T�, by (6.15) and (6.18), we obtain

j.F2. N̂ / � F2.ˆ//.t/j D jh.	
Na,Nb.t// � h.	a,b.t//j � �1j	

Na,Nb.t/ � 	a,b.t/j. (6.20)

By (6.9), for every t 2 Œta,b
0 , T�,

�a,b.s; t, 1/ D e
R t

s
l1�l0
Ta.�/ d� �

Z t

s

�Na,b.�/

a.�/
� e
R �

s
l1�l0
Ta.s/ ds d� , s 2 Œ	a,b.t/, T�.
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Therefore,
sup

s2Œ� Na,Nb.t/,T�

j� Na,Nb.s; t, 1/ � �a,b.s; t, 1/j � C
�
kNa � akC0Œ0,T� C kNb � bkC0Œ0,T�

�
. (6.21)

Then, for any t 2 ŒtNa,Nb
0 , T�, we have

j	 Na,Nb.t/ � 	a,b.t/j �
1

inf˛a,b
p

ˇ̌̌
ˇ̌Z � Na,Nb.t/

�a,b.t/
˛a,b

p .s; �a,b.s; t, 1// ds

ˇ̌̌
ˇ̌

D
1

inf˛a,b
p

ˇ̌̌
ˇ
Z T

� Na,Nb.t/

�
˛a,b

p .s; �a,b.s; t, 1// � ˛Na,Nb
p .s; � Na,Nb.s; t, 1//


ds

ˇ̌̌
ˇ

�C
�
kNa � akC0.Œ0,T�/ C kNb � bkC0.Œ0,T�/

�
�Ck N̂ �ˆkC0.Œ0,T�/,

(6.22)

where
inf˛a,b

p :D inf
.t,x/2Œ0,T��Œ0,1�

.a,b/2�"1,T

˛a,b
p .t, x/ > 0

is independent ofˆ. Therefore,
sup

t2
h

tNa,Nb
0 ,T

i j.F2. N̂ / � F2.ˆ//.t/j � C�1k N̂ �ˆkC0.Œ0,T�/. (6.23)

For any given t 2
h

ta,b
0 , tNa,Nb

0

i
, by (6.16) and (6.18), we have

jF2. N̂ / � F2.ˆ/j Djf
0
p .ˇ
Na,Nb.t// � h.	a,b.t//j

�jf 0
p .ˇ
Na,Nb.t// � f 0

p .0/j C jh.	
a,b.t// � h.0/j

�kf 0
px
kL1 jˇ

Na,Nb.t/j C khtkL1 j	
a,b.t/j

��1.jˇ
Na,Nb.t/j C j	a,b.t/j/.

(6.24)

Note that for any t 2
h

ta,b
0 , tNa,Nb

0

i
,

� Na,Nb.s; t, 1/ D e
R t

s
l1�l0
TNa.�/ d� �

Z t

s

�NNa,Nb.�/

Na.�/
� e
R �

s
l1�l0
TNa.s/ ds d� , s 2 Œ0, t�.

Then, using � Na,Nb.0; tNa,Nb
0 , 1/ D 0, it follows that

jˇNa,Nb.t/j D j� Na,Nb.0; t, 1/ � � Na,Nb
�

0; tNa,Nb
0 , 1


j � Cjt � tNa,Nb

0 j � CjtNa,Nb
0 � ta,b

0 j. (6.25)

On the other hand, by (6.12) and note that 	a,b.ta,b
0 / D 0, we can prove that for any t 2

h
ta,b

0 , tNa,Nb
0

i
,

j	a,b.t/j D j	a,b.t/ � 	a,b
�

ta,b
0


j � Cjt � ta,b

0 j � CjtNa,Nb
0 � ta,b

0 j. (6.26)

By definition of tNa,Nb
0 and ta,b

0 , similarly to the derivation of (6.21) and (6.22), we obtain

jtNa,Nb
0 � ta,b

0 j � C
�
kNa � akC0.Œ0,T�/ C kNb � bkC0.Œ0,T�/

�
� Ck N̂ �ˆkC0.Œ0,T�/. (6.27)

Then it follows from (6.24)–(6.27) that

sup
t2
h

ta,b
0 ,tNa,Nb

0

i j.F2. N̂ / � F2.ˆ//.t/j � C�1k N̂ �ˆkC0.Œ0,T�/. (6.28)

Combining (6.19), (6.23), and (6.28), we can choose �1 small enough such that

kF. N̂ / � F.ˆ/kC0.Œ0,T�/ D kF2. N̂ / � F2.ˆ/kC0.Œ0,T�/ �
1

2
k N̂ �ˆkC0.Œ0,T�/. (6.29)

Then the contraction mapping theorem implies that F has a unique fixed point .l.�/, fp.�, 1// in�"1,T . Therefore, we find a solution .l, fp/

to Cauchy problems (2.2)–(2.4), which also satisfies the final conditions (3.9) and (3.10). Moreover, because of the uniqueness of the
solution, the desired control functions N.t/ and Fin.t/ can be chosen by substituting the fixed point .l.�/, fp.�, 1// into (6.5) and (6.14),
respectively. This concludes the proof of Theorem 3.3.
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