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a b s t r a c t

We design an event-triggered boundary controller for a continuum model of highly re-entrant
manufacturing systems for which the influx rate of products is the controlled quantity. Mathematically,
the governing equation of the process is a nonlinear hyperbolic partial differential equation with
a nonlinearity arising from the nonlocal propagation speed and the positivity state constraint. The
nonlinearity makes highly non-trivial the proof of well-posedness of the closed-loop system under
ETC, and the design of the triggering mechanism requires novelty because standard triggering schemes
proposed in the literature of linear PDEs do not work. The designed controller can potentially operate
in networked control systems subject to limited information sharing resources. A Lyapunov argument
is utilized to derive the boundary controller together with a feasible event generator that avoids the
occurrence of Zeno behavior for the closed-loop system. The global stability estimate is established
using the logarithmic norm of the state due to the system’s nonlinearity and positivity of the
density. Furthermore, robustness of the proposed controller with respect to the sampling schedule
and sampled-data stabilization results are established. Consistent simulation results that support the
proposed theoretical statements are provided.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The comprehensive development of event-triggered control
n the past few years has been motivated by the crucial need
o preserve limited computational and communication resources
uring the execution of feedback control tasks in constrained Net-
orked Control Systems (NCS). The key idea of event-triggered
ontrol consists of the starting of ‘‘only necessary’’ control ac-
ion when events generated by the real-time systems’ response
ccur, reducing considerably the number of execution of control
asks while preserving satisfactory closed-loop system perfor-
ance. In comparison to the well-known periodical sampled-data
pproach, event-triggered enables noncyclic updates of control
ignals and thereby offers more flexibility to manage constraints
rising from networks and systems interactions. More precisely,
eriodic sampling of control inputs is often undesirable due to
andwidth constraints in the communication and task scheduling

✩ The material in this paper was partially presented at the 2021 American
Control Conference, May 25–28, 2021, New Orleans, LA, USA. This paper was
recommended for publication in revised form by Associate Editor Aneel Tanwani
under the direction of Editor Sophie Tarbouriech.
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I. Karafyllis).
ttps://doi.org/10.1016/j.automatica.2021.109902
005-1098/© 2021 Elsevier Ltd. All rights reserved.
limitations. Generally speaking, event-based control designs re-
quire two challenging steps that can be achieved simultaneously
or independently:

• The construction of a feasible successive execution time
sequence (with positive minimum dwell-time), which is
related to the event generator that determines the time
instants at which the control input is updated.

• The design of the feedback control signal that ensures
closed-loop performance specifications.

Besides the study of digital computer design for closed loop sys-
tems (Hsu & Sastry, 1987; Monaco & Normand-Cyrot, 1985), the
event-based PID control design proposed in Åarzén (1999) and
the event-based sampling for first-order stochastic
systems (Åström & Bernhardsson, 1999) serve as pioneering con-
tributions in the field. These results consider scheduling algo-
rithms that only recondition feedback control signals according
to an error with respect to a given state norm. Later on, moti-
vated by the stabilization of constrained networked control sys-
tems (Hespanha, Naghshtabrizi, & Xu, 2007), major results dedi-
cated to both linear (Heemels, Donkers, & Teel, 2012; Heemels,
Johansson, & Tabuada, 2012; Nowzari, Garcia, & Cortés, 2019;
Peng & Han, 2013; Yook, Tilbury, & Soparkar, 2002) and non-
linear (Abdelrahim, Postoyan, Daafouz, & Nešić, 2016; Nowzari
et al., 2019; Postoyan, Tabuada, Nešić, & Anta, 2015; Seuret &
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rieur, 2011; Tabuada, 2007; Tallapragada & Chopra, 2013) finite-
imensional systems have been established introducing
yapunov-based triggering conditions to ensure stability at de-
ired decay rate. As well, advanced control designs involving
obustness analysis (Borgers & Heemels, 2014; Hetel et al., 2017),
tabilization of multi-agent consensus problems and adaptive
ontrol (Xing, Wen, Liu, Su, & Cai, 2017) can be found in the
bundant literature. From a practical point of view, real imple-
entation of event-based schemes has been achieved to control
ireless throttling valves (Blevins, Nixon, & Wojsznis, 2015), the
ngular position of a gyroscope (Boisseau, Dur, Martinez-Molina,
aharijaona, & Marchand, 2015), the formation of a group of
TOL-UAVs (Guerrero-Castellanos et al., 2017) and a greenhouse
emperature (Pawlowski, Guzmàn, Berenguel, & Dormido, 2015),
o name a few.

Concurrently, substantial efforts have been taken to develop
vent-based control of infinite-dimensional systems. In this case,
he deduction of the triggering condition follows a Lyapunov
riterion and is analogous to that of finite-dimensional systems.
arly results are developed upon reduced-order models that
escribe the dominant dynamics of reaction–diffusion systems.
n this case, the resulting linear finite-dimensional systems are
xploited to match the control objectives (Xue & El-Farray, 2017;
ao & El-Farray, 2012). However, it is well known that the order
f approximation is not trivially determined a priori using a
odal expansion of PDEs (Partial Differential Equations). Along-
ide, both event-triggered and sampled-data control have been
uccessfully developed for reaction-advection-diffusion PDE (Es-
itia, Karafyllis, & Krstic, 2021; Karafyllis & Krstic, 2018; Selivanov
Fridman, 2015, 2016; Wang, 2019; Wang & Wang, 2019) and
DE-PDE cascading systems (Ahmed-Ali, Karafyllis, Giri, Krstic, &
amnabhi-Lagarrigue, 2017) without model reduction. We em-
hasize that Espitia et al. (2021), which employ a small gain
esign, is one of the first attempt of event-triggered boundary
ontrol of 1D parabolic PDEs. Furthermore, Rathnayake, Diagne,
spitia, and Karafyllis (2020) proposed the infinite-dimensional
vent-based output feedback boundary control design for
arabolic PDEs using boundary measurements. For hyperbolic
DEs substantial developments can be found in Baudouin, Marx,
nd Tarbouriech (2019), Davo, Bresch-Pietri, Prieur, and Di Meglio
2018), Espitia (2020), Espitia, Girard, March, and Prieur (2016,
018), Espitia, Tanwani, and Tarbouriech (2017) and Karafyllis
nd Krstic (2017a). It is worth to mention that local stability
esult has been recently achieved applying sampled-data con-
rol to a nonlinear PDE governed by 1-D Kuramoto–Sivashinsky
quation (Kang & Fridman, 2018).
Furthermore, as emphasized in the premier

ontribution (Åarzén, 1999), for factory lines, the event-based
ature of the sampling can be related to the process’s intrin-
ic production rate. From a modeling point of view, discrete-
vent (Hu & Zhou, 2014; Zhou & DiCesare, 2012), Effective Pro-
essing Time (EPT) (Jacobs, Etman, Van Campen, & Rooda, 2003)
nd clearing functions (Graves, 1986) representations, which
equires a deep knowledge of various process specifications or
nly accounts on arrival and departure events of the parts to
workstation when Work in Progress (WIP) is not strongly

arying, has been proven inefficient for operation planning and
ontrol. Motivated by the study of the transient behavior of
anufacturing systems with high fluctuations of the WIP, non-

ocal transport PDE models (Armbruster, Göttlich, & Herty, 2011;
rmbruster, Marthaler, & Ringhofer, 2003; Lefeber, Van Den Berg,
Rooda, 2004) have emerged during the past few years. These

ontinuum models describe the time evolution of the flow of
anufactured products using the spatial distribution of product
ensity as a key variable. Several contributions considering the

ontrol of boundary influx of parts with PI controller (Xu, Ni,

2

Yuan, & Dubljevic, 2018), Lyapunov-based design (Coron & Wang,
2012, 2013; Shang & Wang, 2011), small gain design (Karafyl-
lis & Krstic, 2020), predictor-feedback design (Diagne, Bekiaris-
Liberis, & Krstic, 2017) or optimal (D’Apice, Kogut, & Manzo,
2016; La Marca, Armbruster, Herty, & Ringhofer, 2010) control
techniques of these non-local PDEs have been recently developed
by researchers.

With the unceasing growth of intelligent production lines that
integrate sensors, actuators, and controllers in a wireless com-
munication environment via internet of things (IoT), we design
an event-triggered boundary controller for a continuum model of
highly re-entrant manufacturing systems for which the influx rate
of product is the controlled quantity. Mathematically, the gov-
erning equation of the process is a nonlinear hyperbolic partial
differential equation with a nonlinearity arising from the non-
local propagation speed and the positivity state constraint. The
nonlinearity makes highly non-trivial the proof of well-posedness
of the closed-loop system under ETC, and the design of the trig-
gering mechanism requires novelty because standard triggering
schemes proposed in the literature of linear PDEs do not work.
The designed controller can potentially operate in networked
control systems subject to limited information sharing resources.
A Lyapunov argument is utilized to derive the boundary controller
together with a feasible event generator that avoids the occur-
rence of Zeno behavior for the closed-loop system. The global
stability estimate is established using the logarithmic norm of
the state due to the system’s nonlinearity and positivity of the
density. Furthermore, robustness of the proposed controller with
respect to the sampling schedule and sampled- data stabilization
results (Theorem 4) are established. Consistent simulation results
that support the proposed theoretical statements are provided.

The paper is organized as follows: Section 2 describes the
modeling of highly re-entrant manufacturing systems as nonlo-
cal PDE with an influx boundary condition. The existence and
uniqueness of solutions for a piecewise continuous control input
signal are stated in Section 3. The construction of robust event-
triggered and sampled-data stabilizing boundary controllers is
discussed in Section 4. Simulation results that demonstrate the
feasibility of both event-triggered and sampled-data controllers
are discussed in Section 5. Finally, the paper ends with concluding
remarks and future research directions in Section 6.

Notation: Throughout the paper, we adopt the following no-
ation.

• R+ := [0, +∞). Let u : R+ × [0, 1] → R be given. We
use the notation u[t] to denote the profile at certain t ≥

0, i.e., (u[t])(x) = u(t, x) for all x ∈ [0, 1]. For bounded
functions f : I → R, where I ⊆ R is an interval, we set
∥f ∥∞ = supx∈I (|f (x)|) < +∞. We use the notation f ′(x)
for the derivative at x ∈ [0, 1] of a differentiable function
f : [0, 1] → R.

• Let S ⊆ Rn be an open set and let A ⊆ Rn be a set that satisfies
S ⊆ A ⊆ cl(S). By C0(A ; Ω), we denote the class of continuous
functions on A, which take values in Ω ⊆ Rm. By Ck(A ; Ω),
where k ≥ 1 is an integer, we denote the class of functions on
A ⊆ Rn, which takes values in Ω ⊆ Rm and has continuous
derivatives of order k. In other words, the functions of class
Ck(A; Ω) are the functions which have continuous derivatives
of order k in S = int(A) that can be continued continuously to
all points in ∂S ∩ A. When Ω = R then we write C0(A ) or
Ck(A ).

• A left-continuous function f : [0, 1] → R (i.e. a function with
limy→x− (f (y)) = f (x) for all x ∈ (0, 1]) is called piecewise C1

on [0, 1] and we write f ∈ PC1([0, 1]), if the following prop-
erties hold: (i) for every x ∈ [0, 1) the limits limy→x+ (f (y)),

+ +

(
−1

)

limh→0 ,y→x h (f (y + h) − f (y)) exist and are finite, (ii)
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for every x ∈ (0, 1] the limit limh→0−

(
h−1 (f (x + h) − f (x))

)
exists and is finite, (iii) there exists a set J ⊂ (0, 1) of finite
cardinality, where f ′(x) = limh→0−

(
h−1 (f (x + h) − f (x))

)
=

limh→0+

(
h−1 (f (x + h) − f (x))

)
holds for x ∈ (0, 1)\J , and (iv)

the mapping ((0, 1)\J) ∋ x → f ′(x) ∈ R is continuous. Notice
that we require a piecewise C1 function to be left-continuous
but not continuous.

2. Continuum model of highly re-entrant manufacturing sys-
tems

Manufacturing systems with a high volume and a large num-
ber of consecutive production steps (which typically number in
the many hundreds) are often modeled by non-local PDEs (Arm-
bruster et al., 2011, 2003; Lefeber et al., 2004). The general
one-dimensional continuity equation expressing mass conserva-
tion along the production stages is considered. Defining the flow
of unit parts per unit time as (F (ρ[t]))(x) where F is the flux at the
production stage x and time t depending of the density of product
ρ(t, x), namely, the work in progress, the following equation of
conservation can be written between two production stages x1
and x2
∂

∂ t

∫ x2

x1

ρ(t, x)dx = (F (ρ[t]))(x1) − (F (ρ[t]))(x2), (1)

and equivalently in differential form as
∂ ρ(t, x)

∂ t
+

∂(F (ρ[t]))(x)
∂ x

= 0. (2)

The density function ρ(t, x) defined at time t ≥ 0 and stage
∈ [0, 1], is required to be positive (i.e., ρ(t, x) > 0 for (t, x) ∈

R+ × [0, 1]). Moreover, it has a spatially uniform and positive
equilibrium profile

ρ(x) ≡ ρs, ρs > 0.

Controlling of the governing equation (2) consists of determining
the influx

(F (ρ[t]))(0) = u(t) (3)

that results in the desired outflux

(F (ρ[t]))(1) = y(t). (4)

A challenging aspect of the model (2) is the characterization of
flux F as a function of the work in progress ρ. Following Arm-
bruster et al. (2011, 2003) and Lefeber et al. (2004), F can be
defined as a function of the length of the queue or the total work
load W (t), that is,

(F (ρ[t]))(x) = λ (W (t)) ρ(t, x),

leading to the following equation
∂ ρ

∂ t
(t, x) + λ (W (t))

∂ ρ

∂ x
(t, x) = 0, (5)

where

W (t) =

∫ 1

0
ρ(t, x)dx. (6)

Here, λ ∈ C1 (R+; (0, +∞)) is a non-increasing function that
determines the production speed. Hence, the process influx rate
at the boundary defined in (3) becomes

ρ(t, 0)λ (W (t)) = u(t), (7)

where u(t) ∈ (0, +∞) is the control input.
In what follows, we intend to apply event-triggered boundary

control through u(t) ∈ (0, +∞) to the manufacturing plant
escribed by the (5)–(7), which will achieve global stabilization
3

of the spatially uniform equilibrium profile ρ(x) ≡ ρs. Therefore,
the control u(t) ∈ (0, +∞) will have the form

u(t) = ui, for t ∈ [ti, ti+1) (8)

here ui > 0 are the input values that will be determined by the
ontroller and the times { ti : i = 0, 1, 2, . . . } will be the times
of the events that will be determined by the event-trigger, which
will constitute an increasing sequence with t0 = 0.

3. Notion of solution

First we describe precisely the notion of the solution of the
closed-loop system.

3.1. Existence and uniqueness of solution under constant boundary
input signal

The following result plays an instrumental role in the con-
struction of solutions for the closed-loop system (5), (6), (7), (8).

Theorem 1. Consider the initial–boundary value problem (5), (6),
(7) with initial condition

ρ(0, x) = ρ0(x), for x ∈ (0, 1] (9)

where λ ∈ C1 (R+; (0, +∞)) is a non-increasing function, ρ0 ∈

PC1 ([0, 1]), u(t) ≡ u > 0 and infx∈(0,1] (ρ0(x)) > 0. Suppose
that there exists a constant K > 0 such that

⏐⏐λ′(s)
⏐⏐ ≤ K for all

s ≥ 0. Then there exist tmax ∈ (0, +∞] and unique functions
W ∈ C0 ([0, tmax); (0, +∞)), ρ : [0, tmax)×[0, 1] → (0, +∞) with
ρ[t] ∈ PC1 ([0, 1]) and infx∈[0,1] (ρ(t, x)) > 0 for all t ∈ [0, tmax),
which constitute a solution of the initial–boundary value problem
(5), (6), (7), (9) in the following sense:

• The function ρ : [0, tmax) × [0, 1] → (0, +∞) is of class
C1 ([0, tmax) × [0, 1]\Ω), where

Ω = Ω1 ∪ Ω2 (10)

with

Ω1 = ∪
i=0,...,N

{(t, ri(t)) : t ∈ [0, tmax), ri(t) ≤ 1} , (11)

Ω2 = ∪
i=0,...,N

{
(t, ri(t) − 1) : t ∈ [0, tmax),

1 ≤ ri(t) ≤ 2

}
, (12)

and

ri(t) = ξi +

∫ t

0
λ(W (s))ds, (i = 0, . . . ,N), (13)

ξ0 = 0 and ξi ∈ [0, 1) (i = 1, . . . ,N) are the points (in increasing
order) for which ρ0 ∈ C1 ([0, 1]\{ξ0, . . . , ξN}).

• Eq. (5) holds for all (t, x) ∈ [0, tmax)× [0, 1]\Ω and Eqs. (6), (7),
(9) hold for t ∈ [0, tmax) with u(t) ≡ u > 0.

• Finally, if tmax < +∞ then

lim sup
t→t−max

(∥ρ[t]∥∞) = +∞. (14)

emark 1. Theorem 1 whose detailed proof is given in Section
ppendix, states the existence of solution of the initial–boundary
alue problem (5), (6), (7), (9) with a positive piecewise contin-
ous initial data and a positive constant input u(t) = u. Note
hat Theorem 1 does not exclude the possible existence of a finite
scape time, i.e., tmax < +∞. However, it shows that if a finite
scape time exists, then the solution must ‘‘blow up’’.
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.2. Existence and uniqueness of solution under an event-triggered
oundary control law

Given ρ0 ∈ PC1 ([0, 1]) with infx∈(0,1] (ρ0(x)) > 0 and using
heorem 1, we are in a position to construct a unique solution
or the closed-loop system (5), (6), (7), (8), (9) by means of the
ollowing algorithm for each integer i ≥ 0:

(1) Given ti ≥ 0 and ρ[ti] ∈ PC1 ([0, 1]) with infx∈(0,1] (ρ(ti, x)) >
0, determine ui > 0 by using an appropriate feedback law.

(2) Construct the solution of the initial–boundary value problem
∂ y
∂ t

(t, x) + λ (V (t))
∂ y
∂ x

(t, x) = 0,

V (t) =

∫ 1

0
y(t, x)dx,

y(t, 0)λ (V (t)) = ui,

with initial condition y(0, x) = ρ(ti, x), for x ∈ (0, 1]. The-
orem 1 guarantees that such a solution exists as long as y
remains bounded in the interval [0, ti+1 − ti].

(3) Using the event-trigger and assuming that ρ[ti + s] = y[s] for
s ≥ 0, determine the time of the next event ti+1 > ti.

(4) Set ρ[ti + s] = y[s] for 0 ≤ s ≤ ti+1 − ti and repeat.

The above algorithm guarantees that the solution satisfies ρ[t] ∈

PC1 ([0, 1]) and infx∈[0,1] (ρ(t, x)) > 0 for all t ∈ [0, tmax), where
tmax ∈ (0, +∞] is the maximal existence time of the solution.
Moreover, Eqs. (6), (7), (8), (9) hold, while the PDE (5) holds for
(t, x) ∈ [0, tmax) × [0, 1] almost everywhere. Finally, if tmax <
limi→+∞ (ti) then lim supt→t−max

(∥ρ[t]∥∞) = +∞, which implies
that the solution exists as long as it is bounded.

4. Event-triggered and sampled-data control design

4.1. Design of the event-triggered boundary control law

We design an event-triggering control law by defining a static
triggering condition and a control signal based on a Lyapunov
argument.

Let σ > 0 be a parameter of the controller and consider the
event-triggered controller given by the following formulas for all
integers i ≥ 0:

t0 = 0 (15)

µi = inf
{
τ > ti : Ψ (τ , 0) >

exp
(

−σ

∫ τ

ti

λ(W (s))ds
)

sup
0<x≤1

(Ψ (ti, x) exp(−σx))
}

(16)

ti+1 = min
(
ti +

1
λ(0)

, µi

)
, (17)

ui = ρsλ (W (ti)) , (18)

where

Ψ (t, x) =

⏐⏐⏐⏐ln(ρ(t, x)
ρs

)⏐⏐⏐⏐ . (19)

It is possible to show that the event-triggered controller (8), (15),
(16), (17), (18) guarantees global stabilization of system (5), (6),
(7). Moreover, no Zeno behavior can occur for the closed-loop
system. The structure of the closed-loop system consisting of the
plant, the event generator, and the control input is depicted in
Fig. 1.
4

Fig. 1. Event-trigger closed-loop system.

emark 2. The stability estimate is established in a special state
norm. Due to the positivity of the state, the logarithmic norm
of the state ρ appears, i.e., we have Ψ (t, x) given in (19) in-
tead of the usual |ρ(t, x) − ρs| that appears in many stability
stimates for linear PDEs. The logarithmic norm is a manifes-
ation of the nonlinearity of system (5), (6), (7) and the fact
hat the state space is not a linear space but rather a positive
one: the state space for system (5), (6), (7) is the set X :=

ρ ∈ PC1 ([0, 1]) : infx∈(0,1] (ρ(x)) > 0
}
. The use of the logarith-

ic norm of the state is common in systems with positivity
onstraints (see Karafyllis & Krstic, 2017b, 2020).

Next, we state our main result in the following theorem.

heorem 2. Suppose that there exists a constant K > 0 such that
λ′(s)

⏐⏐ ≤ K for all s ≥ 0. Let σ > 0 be a given parameter and
onsider the closed-loop system (5), (6), (7), (8), (15), (16), (17),
18). Then there exists a non-increasing function T : R+ → (0, +∞)
uch that for every ρ0 ∈ PC1 ([0, 1]) with infx∈(0,1] (ρ0(x)) > 0, the
following estimates hold for the solution ρ : R+×[0, 1] → (0, +∞)
with ρ[t] ∈ PC1 ([0, 1]) and infx∈[0,1] (ρ(t, x)) > 0 for all t ≥ 0 of
the initial–boundary value problem (5), (6), (7), (8), (9), (15), (16),
(17), (18):

sup
0≤x≤1

Ψ (t, x) ≤ exp (−σ (c(ρ0)t − 1)) sup
0<x≤1

Ψ0(x), (20)

for all t ≥ 0,

ti+1 ≥ ti + T
(

sup
0<x≤1

Ψ0(x)
)

, for all t ≥ 0, (21)

where

c(ρ0) := λ

(
ρs exp

(
exp(σ ) sup

0<x≤1
Ψ0(x)

))
(22)

and Ψ (t, x) is given in (19).

Proof of Theorem 2. Let ρ0 ∈ PC1 ([0, 1]) with infx∈(0,1] (ρ0(x)) >
0 be given (arbitrary). By virtue of Theorem 1, there exists a
unique solution ρ : [0, tmax) × [0, 1] → (0, +∞) with ρ[t] ∈

PC1 ([0, 1]) and infx∈[0,1] (ρ(t, x)) > 0, for all t ∈ [0, tmax), of
the initial–boundary value problem (5), (6), (7), (8), (9), (15), (16),
(17), (18). The solution ρ : [0, tmax) × [0, 1] → (0, +∞) satisfies
for all i ≥ 0 with ti < tmax and t ∈ [ti,min(ti+1, tmax)):

ρ(t, x) =

⎧⎨⎩ ρ

(
ti, x −

∫ t
ti

v(s)ds
)

if 1 ≥ x >
∫ t
ti

v(s)ds
ui

v(t̃(t,x))
if 0 ≤ x ≤

∫ t
ti

v(s)ds
, (23)

here t̃(t, x) ∈ [ti, t] is the unique solution of the equation

x =

∫ t

v(s)ds, (24)

t̃(t,x)
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(t) = λ (W (t)) . (25)

he uniqueness of solution can be established considering the
unction κ(r) =

∫ t
r v(s)ds, defined for r ∈ [0, t]. Since (t, x) ∈ Φ

ith

:=

{
(t, x) ∈ [0, T ] × [0, 1] , x ≤

∫ t

0
v(s)ds

}
,

t follows that x ≤ κ(0) and from the definition of κ(r) one
educes that κ(t) = 0 ≤ x. Notice that κ is C1 on [0, t] with

dκ(r)
dr = −v(r) < 0 for all r ∈ [0, t]. Therefore, κ is strictly

decreasing on [0, t]. By continuity of κ and knowing that κ(t) ≤

x ≤ κ(0), it follows that there exists r ∈ [0, t] with κ(r) = x. The
fact that κ is strictly decreasing on [0, t] implies the existence of
a unique r ∈ [0, t] with κ(r) = x.

Formula (23) is a consequence of (5)–(8). Notice that since
v(t) ≤ λ(0) (a direct consequence of the fact that
λ ∈ C1 (R+; (0, +∞)) is a non-increasing function) and ti+1−ti ≤
1

λ(0) (a direct consequence of (17)), it follows that formula (23) is
alid for all t ∈ [ti,min(ti+1, tmax)).
We next define for all t ∈ [0, tmax):

V (t) = sup
0≤x≤1

{Ψ (t, x) exp(−σx)}. (26)

Combining (23) and (26) we get for all i ≥ 0 with ti < tmax and
∈ [ti,min(ti+1, tmax)):

max

{
sup

0<ξ≤1−
∫ t
ti

v(s)ds

(
Ψ (ti, ξ )

× exp
(

−σ

(∫ t

ti

v(s)ds + ξ

)))
,

sup
0≤x≤

∫ t
ti

v(s)ds

(
Ψ (t̃(t, x), 0) exp(−σx)

)}

≤ max

{
exp

(
−σ

∫ t

ti

v(s)ds
)
V (ti),

sup
ti≤τ≤t

(
Ψ (τ , 0) exp

(
−σ

∫ t

τ

v(s)ds
))}

. (27)

For the derivation of (27), we have used the fact that t̃(t, x) ∈

[ti, t] is continuously decreasing with respect to x with t̃(t, 0) = t
and t̃

(
t,
∫ t
ti

v(s)ds
)

= ti.
Combined with definition (26), the event-trigger (16), (17), (as

well as continuity of v(t) = λ (W (t)), which implies continuity of
ρ(t, 0) =

ui
v(t) for t ∈ [ti,min(ti+1, tmax))) gives for all i ≥ 0 with

ti < tmax:

Ψ (τ , 0) ≤ exp
(

−σ

∫ τ

ti

λ(W (s))ds
)
V (ti), (28)

for all τ ∈ [ti,min(ti+1, tmax)).
Combining (27) and (28), we get for all i ≥ 0 with t ∈

[ti,min(ti+1, tmax)) and ti < tmax:

V (t) ≤ exp
(

−σ

∫ t

ti

v(s)ds
)
V (ti). (29)

Definition (26) and inequality (29) show that ∥ρ[t]∥∞ is bounded
on [ti,min(ti+1, tmax)). Consequently, Theorem 1 guarantees that
ti+1 < tmax. Therefore, tmax = limi→+∞ (ti).

Notice that the notion of solution that we have adopted guar-
antees that (29) is also valid for t = ti+1. Applying (29) induc-
tively, we get for all t ∈ [0, limi→+∞ (ti)):

V (t) ≤ exp
(

−σ

∫ t

v(s)ds
)
V (0). (30)
0
f

5

Since v(t) = λ(W (t)) ≥ 0 for all t ∈ [0, limi→+∞ (ti)), from (30)
the following inequality holds

V (t) ≤ V (0), ∀t ∈

[
0, lim

i→+∞

(ti)
)

. (31)

Eqs. (7), (8), (15) and (18) with i = 0, imply that ρ(0, 0) = ρs or
equivalently that

Ψ (0, 0) = 0. (32)

Applying (26), for t = 0 and using (9), and (32), we obtain:

V (0) = sup
0<x≤1

{Ψ0(x) exp(−σx)}

≤ sup
0<x≤1

Ψ0(x). (33)

On the other hand, definition (26) implies for all
t ∈ [0, limi→+∞ (ti))

V (t) = sup
0≤x≤1

(Ψ (t, x) exp(−σx))

≥ exp(−σ ) sup
0≤x≤1

Ψ (t, x). (34)

Combining (31), (33) and (34), we get the following estimate for
all t ∈ [0, limi→+∞ (ti)):

sup
0≤x≤1

Ψ (t, x) ≤ exp(σ ) sup
0<x≤1

Ψ0(x). (35)

Definition (22) in conjunction with (6), (35) and the facts that
v(t) = λ (W (t)), λ ∈ C1 (R+; (0, +∞)) is a non-increasing
function imply that v(t) ≥ c(ρ0) for all t ∈ [0, limi→+∞ (ti)).
stimate (20) for t ∈ [0, limi→+∞ (ti)) is a direct consequence

of estimate (30), definition (26) and the fact that v(t) ≥ c(ρ0) for
all t ∈ [0, limi→+∞ (ti)).

The rest of the proof is devoted to the proof of (21) which also
shows that limi→+∞ (ti) = +∞. Define for all t ∈ [ti, ti+1) and
i ≥ 0:

z(t) = exp
(

σ

∫ t

ti

λ (W (s)) ds
)
ln
(

ρ(t, 0)
ρs

)
(36)

By virtue of (36), (7), (8) and (18), we get for all t ∈ [ti, ti+1) and
i ≥ 0:

z(t) = exp
(

σ

∫ t

ti

λ (W (s)) ds
)
ln
(

λ (W (ti))
λ (W (t))

)
(37)

Eq. (37) implies for all i ≥ 0 and for t ∈ [ti, ti+1) almost
verywhere:

˙(t) = −λ′ (W (t)) (ρ(t, 0) − ρ(t, 1))

× exp
(

σ

∫ t

ti

λ (W (s)) ds
)

+ σλ (W (t)) z(t). (38)

ifferential equation (38) is a direct consequence of the fact that
or t ∈ [ti, ti+1)

(t) = (t − ti)ui +

∫ a(t)

0
ρ(ti, x)dx,

ith

(t) = 1 −

∫ t

ti

λ(W (s))ds. (39)

he previous equations and the fact that ρ[ti] is piecewise contin-
ous show that the mapping [ti, ti+1) ∋ t → W (t) is continuous
nd piecewise continuously differentiable for t ∈ [ti, ti+1). As a
onsequence of (37), we also obtain that the mapping [ti, ti+1) ∋

→ z(t) is continuous and piecewise continuously differentiable
or t ∈ [t , t ).
i i+1
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It follows from the triangle inequality, (36), (38), the fact that
λ ∈ C1 (R+; (0, +∞)) is a non-increasing function and the fact
that

⏐⏐λ′(s)
⏐⏐ ≤ K for all s ≥ 0, that the following inequality holds

for all i ≥ 0 and t ∈ [ti, ti+1) almost everywhere:

|ż(t)| ≤ K |ρ(t, 0) − ρ(t, 1)| exp
(

σ

∫ t

ti

λ (W (s)) ds
)

+ σλ (0) |z(t)| (40)

≤ K |ρ(t, 0) − ρs| exp
(

σ

∫ t

ti

λ (W (s)) ds
)

+ K |ρ(t, 1) − ρs| exp (σλ(0)(t − ti)) + σλ (0) |z(t)| . (41)

Formulas (23), (26) and the fact that |exp(x) − 1| ≤ exp(|x|) − 1
for all x ∈ R, leads to the following estimates

|ρ(t, 1) − ρs| ≤ ∥ρ[ti] − ρs∥∞ ,

∥ρ[ti] − ρs∥∞ ≤ ρs (exp (exp(σ )V (ti)) − 1) .

Moreover, the fact that |exp(x) − 1| ≤ |x| exp(|x|) for all x ∈ R,
shows that

|ρ(t, 0) − ρs| ≤ ρs exp (Ψ (t, 0)) Ψ (t, 0).

Using the previous inequalities in conjunction with (26), (29),
(41) and (36), we get the following inequality for all i ≥ 0 and
t ∈ [ti, ti+1) almost everywhere:

|ż(t)| ≤ (Kρs exp (V (ti)) + σλ (0)) |z(t)|

+ Kρs (exp (exp(σ )V (ti)) − 1) exp (σλ(0)(t − ti)) . (42)

Using (42), the facts that z(ti) = 0, ti+1 − ti ≤
1

λ(0) (a direct
consequence of (17)), and the Gronwall–Bellman lemma, we get
for all i ≥ 0 and t ∈ [ti, ti+1):

|z(t)| ≤ (exp (exp(σ )V (ti)) − 1)

× exp (σ )
exp (Kρs exp (V (ti)) (t − ti)) − 1

exp (V (ti))
. (43)

t follows from (43) that the inequality |z(t)| ≤ V (ti) holds for all
∈ [ti, ti+1), provided that

i+1 − ti ≤ T̃ (V (ti)) , (44)

here

˜ (s) :=

⎧⎨⎩ 1
Kρs

exp (−s) ln
(
1 +

s exp(s−σ)

exp
(
exp(σ )s

)
−1

)
if s > 0

1
Kρs

ln (1 + exp (−2σ)) if s = 0
(45)

ith T̃ (0) = lims→0+ T̃ (s).
Using (16), (17), (36) and (45), we conclude that

i+1 − ti ≥ min
(

1
λ(0)

, T̃ (V (ti))
)

. (46)

Continuity and positivity of the function T̃ (s) defined by (45),
implies that there exists a non-increasing function T : R+ →

(0, +∞) such that

min
(

1
λ(0)

, T̃ (s)
)

≥ T (s),

for all s ≥ 0. Inequality (21) is a consequence of the previous in-
equality, (46), (30) and definition (26). The proof is complete. ◁

Remark 3. Estimate (21) guarantees that no Zeno behavior can
appear for the closed-loop system (5), (6), (7), (8), (15), (16),
(17), (18) even if a positive minimum dwell-time is not explicitly
established. The proof of Theorem 2 provides an estimate for the
function T : R+ → (0, +∞).
 (

6

4.2. Robustness with respect to the event sequence

Let ρ0 ∈ PC1 ([0, 1]) with infx∈(0,1] (ρ0(x)) > 0 be given and
define:

G(ρ0) := min
(

1
λ(0)

, r
)

, (47)

where

r := inf

{
τ > 0 : Ψ (τ , 0)

> exp
(

−σ

∫ τ

0
λ(W (s))ds

)
× sup

0<x≤1
(Ψ0(x) exp(−σx))

}
, (48)

here ρ[t] ∈ PC1 ([0, 1]) and infx∈[0,1] (ρ(t, x)) > 0 for all t ≥ 0,
is the solution of (5), (6), (7), (9) with u(t) ≡ ρsλ

(∫ 1
0 ρ0(x)dx

)
.

efinitions (47), (48) imply that the event-triggered control (15),
16), (17), (18) satisfies the following relation for all i ≥ 0:

i+1 = ti + G (ρ[ti]) (49)

Theorem 2 (and particularly inequality (11)) shows that for ev-
ery initial condition ρ0 ∈ PC1 ([0, 1]) with infx∈(0,1] (ρ0(x)) >
0, the sequence of events { ti : i = 0, 1, 2, . . . } with t0 = 0
is a diverging sequence, i.e., limi→+∞ (ti) = +∞. However,
there is an infinite number of diverging increasing sequences
{ ti : i = 0, 1, 2, . . . } with t0 = 0 for which ti+1 − ti ≤ G (ρ[ti])
for all i ≥ 0. For these sequences, the controller acts (through (9))
before an event occurs. The following result extends the result of
Theorem 2 and guarantees robustness with respect to the event
sequence.

Theorem 3. Suppose that there exists a constant K > 0 such that⏐⏐λ′(s)
⏐⏐ ≤ K for all s ≥ 0. Let σ > 0 be a given parameter. Then for

every ρ0 ∈ PC1 ([0, 1]) with infx∈(0,1] (ρ0(x)) > 0 and for every
increasing sequence of times { ti : i = 0, 1, 2, . . . } with t0 = 0,
limi→+∞ (ti) = +∞ that satisfies

ti+1 − ti ≤ G (ρ[ti]) , for all i ≥ 0, (50)

the solution ρ : R+ × [0, 1] → (0, +∞) with ρ[t] ∈ PC1 ([0, 1])
and infx∈[0,1] (ρ(t, x)) > 0 for all t ≥ 0 of the initial–boundary value
problem (5), (6), (7), (8), (9), (18) satisfies estimate (20).

Proof of Theorem 3. The proof is essentially the same as the
first part of the proof of Theorem 2. The only difference is to
notice that the event-trigger (16), (17), (as well as continuity of
v(t) = λ (W (t)), which implies continuity of ρ(t, 0) =

ui
v(t) for

t ∈ [ti,min(ti+1, tmax))) gives for all i ≥ 0 with ti < tmax when
ombined with definitions (26), (47), (48):

(τ , 0) ≤ exp
(

−σ

∫ τ

ti

λ(W (s))ds
)
V (ti), (51)

or all τ ∈ [ti,min (tmax, ti + G (ρ[ti]))). Inequality (51) replaces
nequality (28). Using (51) we end up with inequality (35) exactly
s in the proof of Theorem 2. The rest of the proof of Theorem 2 is
ot needed because it is not needed to show inequality (21) and
t is assumed that limi→+∞ (ti) = +∞. The proof is complete. ◁

.3. Sampled-data stabilization with robustness with respect to the
ampling schedule

Theorem 3 is important because it shows that the controller
18) can be implemented in various ways. For example, we can
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mplement the controller (18) in a sample-and-hold fashion for
n appropriate sampling period. This is shown by the following
esult.

heorem 4. Suppose that there exists a constant K > 0 such that
λ′(s)

⏐⏐ ≤ K for all s ≥ 0. Let σ > 0 be a given parameter.
Then, for every R > 0 there exists τ > 0 such that for every
ρ0 ∈ PC1 ([0, 1]) with infx∈(0,1] (ρ0(x)) > 0, sup0<x≤1Ψ0(x) ≤ R and
or every increasing sequence of times { ti : i = 0, 1, 2, . . . } with
t0 = 0, limi→+∞ (ti) = +∞ that satisfies

ti+1 − ti ≤ τ , for all i ≥ 0, (52)

he solution ρ : R+ × [0, 1] → (0, +∞) with ρ[t] ∈ PC1 ([0, 1])
and infx∈[0,1] (ρ(t, x)) > 0 for all t ≥ 0 of the initial–boundary value
problem (5), (6), (7), (8), (9), (18) satisfies estimate (20).

The sample-and-hold implementation of the controller (18)
does not require continuous measurement of the state. On the
other hand, the time τ > 0 is (in general) much smaller than
G (ρ[ti]), which implies that the control action must be updated
much more frequently in the sampled-data case than in the
event-triggered case.

Proof of Theorem 4. The proof of Theorem 2 and definitions (47),
(48) actually show that there exists a non-increasing function
T : R+ → (0, +∞) such that for every R > 0 and for every
ρ ∈ PC1 ([0, 1]) with infx∈(0,1] (ρ(x)) > 0 and sup0<x≤1Ψ (x) ≤ R,
the following inequality holds:

G(ρ) ≥ T (R) . (53)

Setting τ := T (R) and repeating the proof of Theorem 2 with (51)
replacing (28), we are in a position to show that inequality (35)
holds for every increasing sequence of times { ti : i = 0, 1, 2, . . . }
with t0 = 0, limi→+∞ (ti) = +∞ that satisfies (52). The proof is
complete. ◁

5. Simulation results

5.1. Event-triggered boundary control law

We simulate closed-loop system consisting of (5), (6), (7),
(9) together with the even triggered controller (15)–(18). The
nonlocal propagation speed of PDE (5) is defined as

λ(W ) =
1

1 + W
,

where W is given by (6). The initial condition is set to ρ0(x) =

+ sin(πx) and the equilibrium density is defined as ρs = 1. The
vent generator is computed for two values of σ , namely, σ =

.02 and σ = 0.006. Here, the number of updating times of the
ontrol signal is an increasing function of the parameter σ . Fig. 2
hows the evolution of the influx of parts that is the boundary
ontrol action while Fig. 3 reflects the dynamics of the density
t the input with the event-triggered instants. From Figs. 3 and
, it can be viewed that both the input and the output density
re stabilized at the desired uniform equilibrium ρs = 1 for both
alues of σ . However, the greater is the value of σ , the faster is
he convergence rate due to the increasing number of execution
f the control task (18). Moreover, Fig. 5, which represents the L2-
orm of Ψ (t, x), shows that ρ(t, x) converges to the equilibrium
n a L2 sense. This statement is confirmed by Figs. 6 and 7 which
hows the evolution in time of the distributed density ρ(t, x) for
oth values of σ .
For a set of initial conditions defined as ρ0(x) = 6+ sin(πx)+

×x4, l = 1, . . . , 100, Fig. 8 represents the statistics on the inter-
xecution times under the event-triggered policy (16), (17) for
7

Fig. 2. Infux dynamics: event-triggered control action at the boundary x = 0.

Fig. 3. Density evolution in time at the controlled boundary and event-trigger
instants ti .

Fig. 4. Outflux dynamics at the uncontrolled boundary x = 1.

= 0.02 and σ = 0.006, in a logarithmic scale. For a fast
sampling, σ = 0.02, the inter-execution time τ = ti+1 − ti
is predominantly of order 0.5 while for slow sampling τ is of
order 2. These values can be used as indicative (but possibly
conservative) choices of the sampling periods applying a sampled
data control approach knowing the robustness of the event-based
control with respect to the triggering policy.

5.2. Sampled-data boundary control law

To illustrate the robustness of the control action concerning
the sampling schedule, we apply the controller (18) with a peri-
odically updated control action. Here, the simulation is performed
under the previous initial condition with an identical function λ.
Two sampling periods are considered, namely, T = 1 and T = 3,
as shown in Fig. 9 motivated by the statistics in Fig. 8. The results
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Fig. 5. L2 norm of the distributed density deviation for different values of σ .

Fig. 6. The dynamics of the distributed density function for σ = 0.02.

Fig. 7. The dynamics of the distributed density function for σ = 0.006.

Fig. 8. The inter-execution time σ = 0.02 and σ = 0.006: statistics with 200
nitial conditions.

btained in Figs. 10 and 11 prove that the input density converge
o the uniform setpoint ρs = 1 and the output flux is also
tabilized at the equilibrium. As expected, the L2 norm of Ψ (t, x)
ends to zero (Fig. 12), and the distributed density function are
8

Fig. 9. Infux dynamics with sampled data boundary control action.

Fig. 10. The distributed density evolution in time at the controlled boundary
(x = 0) with sampled data control.

Fig. 11. Outflux dynamics at the uncontrolled boundary x = 1 with sampled
data control.

stabilized to ρs for both the considered sampling periods (Figs. 13
and 14). As for the event-triggered control, one can notice that
fast sampling (T = 1) enabled better closed-loop performance.

Moreover, considering a sampling period T = 3, both the ETC
(σ = 0.02 and σ = 0.006) simulations converge faster than
the sampled-data controller, which shows that the ETC control
scheme outperforms the periodic sampling control approach.

6. Concluding remarks

In this paper, an even-triggered control algorithm is devel-
oped to stabilize the continuum model of a highly re-entrant
manufacturing system. The robustness of the proposed controller
with respect to the sampling policy is proven to enable the
implementation of the classical sampled-data controller with a
cyclic update of the control action. Our controller requires the
measurement of the distributed density and developing an output
feedback event-triggered controller that only relies on boundary
or point measurements will be considered in our future works.
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Fig. 12. L2 norm of the distributed density deviation for the two sampling
eriods.

Fig. 13. The distributed density dynamics with sampling period T = 3.

Fig. 14. The distributed density dynamics with sampling period T = 1.

ppendix

roof of Theorem 1. Let ρ0 ∈ PC1 ([0, 1]), u > 0 and
infx∈(0,1] (ρ0(x)) > 0 be given (arbitrary). Define

ρmax := sup
x∈(0,1]

(ρ0(x)) , ρmin := inf
x∈(0,1]

(ρ0(x)) . (54)

Consider for each T ∈

(
0, 1

λ(0)

]
the mapping P : S → S, where

=

{
W ∈ C0([0, T ]) : 0 ≤ W (t) ≤ ρmax

+
u

λ(0)
, t ∈ [0, T ]

}
, (55)

hich maps every W ∈ S to the function P(W ) ∈ S given by the
ormula

(W )(t) = tu +

∫ a(t)

ρ0(x)dx, for t ∈ [0, T ], (56)

0

9

where

a(t) = 1 −

∫ t

0
λ(W (s))ds, for t ∈ [0, T ]. (57)

or all W , V ∈ S for the mapping P : S → S defined by (56), (57),
e have that

P(W )(t) − P(V )(t)| =

⏐⏐⏐⏐∫ a(t)

ā(t)
ρ0(x)dx

⏐⏐⏐⏐ , (58)

here

¯(t) = 1 −

∫ t

0
λ(V (s))ds, for t ∈ [0, T ]. (59)

From (54) and (57)–(59), the following estimate holds

P(W )(t) − P(V )(t)| ≤ ρmax

⏐⏐⏐⏐∫ t

0
[λ(W (s)) − λ(V (s))] ds

⏐⏐⏐⏐ , (60)

hich leads to

P(W )(t) − P(V )(t)| ≤ tρmax sup
s≥0

λ′(s)
(

max
0≤t≤T

|W (t) − V (t)|
)

.

(61)

ence, the following inequality holds

max
∈[0,T ]

(|(P(W ))(t) − (P(V ))(t)|) ≤ ρmaxKT
(

max
t∈[0,T ]

|W (t) − V (t)|
)

,

(62)

here K > 0 is the constant for which
⏐⏐λ′(s)

⏐⏐ ≤ K for all s ≥ 0.
Therefore, for

=
1

λ(0) + Kρmax
,

the mapping P : S → S is a contraction and Banach’s fixed-point
theorem implies the existence of a unique W ∈ S such that

W (t) = tu +

∫ a(t)

0
ρ0(x)dx, for t ∈ [0, T ], (63)

here a(t) is given by (57). Notice that definitions (54) and
q. (63) as well as the fact that λ(s) ≤ λ(0) for all s ≥ 0, imply
he following estimate:

(t) ≥ tu + ρmin(1 − λ(0)t) > 0, for t ∈ [0, T ] (64)

ext define the functions v : [0, T ] → (0, +∞), ρ : [0, T ] ×

0, 1] → (0, +∞) by means of the equations

(t) = λ (W (t)) , for t ∈ [0, T ], (65)

(t, x) =

⎧⎨⎩ ρ0

(
x −

∫ t
0 v(s)ds

)
if
∫ t
0 v(s)ds < x ≤ 1

u
v(t̃(t,x))

if 0 ≤ x ≤
∫ t
0 v(s)ds

, (66)

here t̃(t, x) ∈ [0, t] is the unique solution of (24) for all

(t, x) ∈ Φ :=

{
(t, x) ∈ [0, T ] × [0, 1] , x ≤

∫ t

0
v(s)ds

}
.
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otice that ρ[t] ∈ PC1([0, 1]) for each t ∈ [0, T ] and that∫ 1

0
ρ(t, x)dx =

∫ 1−a(t)

0
ρ(t, x)dx +

∫ 1

1−a(t)
ρ(t, x)dx,

= u
∫ 1−a(t)

0

dx
v
(
t̃(t, x)

)
+

∫ 1

1−a(t)
ρ0 (x + a(t) − 1) dx,

= ut +

∫ a(t)

0
ρ0 (x) dx = W (t). (67)

For the derivation of (67), we have used formulas (57), (65), (66),
(63) and the fact that following (24)

∂ t̃
∂ x

(t, x) = −
1

v(t̃(t, x))
, (68)

or all (t, x) ∈ Φ , where

Φ :=

{
(t, x) ∈ [0, T ] × [0, 1] , x ≤

∫ t

0
v(s)ds

}
,

ith

˜(t, 0) = t and t̃
(
t,
∫ t

0
v(s)ds

)
= 0. (69)

We next repeat the construction with ρ0 replaced by ρ[T ]. We
can construct functions ṽ : [0, T ′

] → (0, +∞), ρ̃ : [0, T ′
] ×

[0, 1] → (0, +∞), W̃ ∈ C0([0, T ′
]) with

0 ≤ W̃ (t) ≤ ∥ρ[T ]∥∞ +
u

λ(0)
for t ∈ [0, T ′

],

nd

′
=

1
λ(0) + K ∥ρ[T ]∥∞

such that

W̃ (t) =

∫ 1

0
ρ̃(t, x)dx,

ṽ(t) = λ

(
W̃ (t)

)
,

W̃ (t) = tu +

∫ ã(t)

0
ρ(T , x)dx,

ã(t) = 1 −

∫ t

0
λ(W̃ (s))ds.

It is a matter of straightforward calculations to verify that the
extensions of ρ, v,W given by the formulas for t ∈ (T , T + T ′

],
x ∈ [0, 1]:

ρ(t, x) = ρ̃(t − T , x),

W (t) = W̃ (t − T ),
v(t) = ṽ(t − T )

satisfy the following equations for all t ∈ [0, T + T ′
], x ∈ [0, 1]:

v(t) = λ (W (t)) , (70)

ρ(t, x) =

⎧⎨⎩ ρ0

(
x −

∫ t
0 v(s)ds

)
if
∫ t
0 v(s)ds < x ≤ 1

u
v(t̃(t,x))

if 0 ≤ x ≤
∫ t
0 v(s)ds

, (71)

W (t) =

∫ 1

ρ(t, x)dx, (72)

0

10
where t̃(t, x) ∈ [0, t] is the unique solution of (24) for all (t, x) ∈

Φ with

Φ :=

{
(t, x) ∈ [0, T + T ′

] × [0, 1] , x ≤

∫ t

0
v(s)ds

}
.

The construction can be repeated ad infinitum and thus we obtain
functions v : [0, tmax) → (0, +∞), ρ : [0, tmax) × [0, 1] →

(0, +∞), W ∈ C0([0, tmax)) that satisfy (70), (71), (72) for all
t ∈ [0, tmax), x ∈ [0, 1]. Moreover, if tmax < +∞ then
lim supt→t−max

(∥ρ[t]∥∞) = +∞. Furthermore, ρ[t] ∈ PC1([0, 1])
for each t ∈ [0, tmax).

Finally, formulas (70), (71) and the facts that λ(s) ≤ λ(0) for
all s ≥ 0, infx∈(0,1] (ρ0(x)) > 0 imply that infx∈[0,1] (ρ(t, x)) > 0 for
each t ∈ [0, tmax). Notice that Eqs. (6), (7), (9) hold for t ∈ [0, tmax)
with u(t) ≡ u > 0. Moreover, the following holds:

W (t) =
(
t − t̃ (t,min{1, 1 − a(t)})

)
u

+

∫ max{0,a(t)}

0
ρ0(ξ )dξ, for t ∈ [0, tmax). (73)

The proof of (73) is established considering the following two
cases:

• Case 1:
∫ t
0 v(s)ds < 1 or a(t) ∈ (0, 1].

By virtue of (70), (71), (72) and (57) we get the following
equality for t ∈ [0, tmax)

W (t) =

∫ 1

0
ρ(t, x)dx

=

∫ 1−a(t)

0
ρ(t, x)dx +

∫ 1

1−a(t)
ρ(t, x)dx (74)

Hence,

W (t) = u
∫ 1−a(t)

0

1
v
(
t̃(t, x)

)dx +

∫ 1

1−a(t)
ρ0 (x + a(t) − 1) dx.

(75)

Since (68) holds for all (t, x) ∈ Φ , by using the change of
variable ξ = t̃(t, x) we obtain the following equation∫ 1−a(t)

0

1
v
(
t̃(t, x)

)dx =

∫ t̃(t,1−a(t))

t̃(t,0)
dξ . (76)

Using (57), (75), (69), (70) and (76), we have for t ∈ [0, tmax):

W (t) = ut +

∫ 1

1−a(t)
ρ0 (x + a(t) − 1) dx (77)

= ut +

∫ a(t)

0
ρ0 (s) ds. (78)

Knowing that min{1, 1 − a(t)} = 1 − a(t) (a consequence of
the fact that a(t) ∈ (0, 1]) and since t̃(t, 1 − a(t)) = 0 (a
consequence of (57), (69) and (70)), Eq. (78) shows that (73)
holds.

• Case 2:
∫ t
0 v(s)ds ≥ 1 or a(t) ≤ 0.

By virtue of (70), (71), (72) and (57) we get for t ∈ [0, tmax)

W (t) =

∫ 1

0
ρ(t, x)dx = u

∫ 1

0

1
v
(
t̃(t, x)

)dx. (79)

Since (68) holds for all(t, x) ∈ Φ we obtain by using the change
of variable ξ = t̃(t, x) the following equation∫ 1

0

1
v
(
t̃(t, x)

)dx =

∫ t̃(t,0)

t̃(t,1)
dξ . (80)

Using (57), (79), (69), (70)) and (80), we have for t ∈ [0, tmax):

W (t) = u
(
t − t̃(t, 1)

)
. (81)
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Since min{1, 1 − a(t)} = 1 and max{0, a(t)} = 0 (both
consequences of the fact that a(t) ≤ 0), Eq. (81) shows that
(73) holds.

Eq. (71) implies that ρ is not C1 at specific points:

• The points (t, x) ∈ [0, tmax) × [0, 1] for which

ξi = x −

∫ t

0
v(s)ds, (82)

where ξi ∈ [0, 1) (i = 0, . . . ,N) are the points (in increasing
order with ξ0 = 0) for which ρ0 ∈ C1 ([0, 1]\{ξ0, . . . , ξN})

due to the lack of regularity of the initial condition ρ0(x).

• On the other hand, Eq. (71), shows that ρ may not be C1

at the points (t, x) ∈ [0, tmax) × [0, 1] for which t̃(t, x) is
equal to a time where W is not C1. Knowing that (73) can
be rewritten as

W (t) =

{
ut +

∫ a(t)
0 ρ0(x) dx for a(t) ≥ 0(

t − t̃(t, 1)
)
u for a(t) < 0

, (83)

we deduce that the W is not C1 at the times where a(t) =

0 and a(t) is equal to a point where ρ0 is discontinuous.
Clearly, all discontinuity points of ρ0 are included in the
set {ξ0, . . . , ξN} and therefore the times τ ∈ [0, tmax) with
a(τ ) ∈ {ξ0, . . . , ξN} are the times of concern. Consequently,
the points (t, x) ∈ [0, tmax) × [0, 1] for which t̃(t, x) is equal
to a time where W is not C1 are included in the set of all
(t, x) for which a(t̃(t, x)) ∈ {ξ0, . . . , ξN}.
Since x =

∫ t
t̃(t,x) v(s)ds and a(t) = 1 −

∫ 1
0 v(s)ds, it follows

that

a(t̃(t, x)) = 1 + x −

∫ 1

0
v(s)ds (84)

and the discontinuity occurs at the points (t, x) ∈ [0, tmax)×
[0, 1] satisfying

ξi = 1 + x −

∫ 1

0
v(s)ds, i = 0, . . . ,N. (85)

Since

ri(t) = ξi +

∫ 1

0
λ(W (s))ds = ξi +

∫ 1

0
v(s)ds,

for i = 0, . . . ,N , it follows that x = ri(t) − 1.

Finally, combining the sets defined by (11) and (12), we arrive at
(10).

The fact that Eq. (5) holds for all (t, x) ∈ [0, tmax) × [0, 1]\Ω
is a direct consequence of formula (71), the above regularity
properties for ρ, v,W and the fact that following (24)

∂ t̃
∂ x

(t, x) = −
1

v(t̃(t, x))
,

∂ t̃
∂ t

(t, x) =
v(t)

v(t̃(t, x))
,

for all (t, x) ∈ Φ ,

Φ :=

{
(t, x) ∈ [0, tmax) × [0, 1] , x ≤

∫ t

0
v(s)ds

}
.

Uniqueness of solution is a consequence of Banach’s fixed-
point theorem: the fact that Eq. (73) has a unique solution W ∈

C0([0, tmax)). The solution of (73) is constructed step-by-step by
using the mapping P : S → S defined by (56), (57) and Banach’s
fixed-point theorem guarantees that P : S → S has a unique fixed
point.

The proof is complete. ◁
11
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