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Abstract—We develop backstepping state feedback control to
stabilize a moving shockwave in a freeway segment under bilat-
eral boundary actuations of traffic flow. A moving shockwave,
consisting of light traffic upstream of the shockwave and heavy
traffic downstream, is usually caused by changes of local road
situations. The density discontinuity travels upstream and drivers
caught in the shockwave experience transitions from free to
congested traffic. Boundary control design in this paper brings
the shockwave front to a static setpoint position, hindering the
upstream propagation of traffic congestion. The traffic dynamics
are described with Lighthill-Whitham-Richard (LWR) model,
leading to a system of two first-order hyperbolic partial dif-
ferential equations (PDEs). Each represents the traffic density
of a spatial domain segregated by the moving interface. By
Rankine-Hugoniot condition, the interface position is driven by
flux discontinuity and thus governed by an ordinary differential
equation (ODE) dependent on the PDE states. The control
objective is to stabilize both the PDE states of traffic density
and the ODE state of moving shock position to setpoint values.
Using delay representation and backstepping method, we design
predictor feedback controllers to cooperatively compensate state-
dependent input delays to the ODE. From Lyapunov stability
analysis, we show local stability of the closed-loop system in H1

norm with an arbitrarily fast convergence rate. The stabilization
result is demonstrated by a numerical simulation and the total
travel time of the open-loop system is reduced by 12% in the
closed-loop.

Index Terms—Backstepping control, State-dependent delay
compensation, PDE-ODE coupled system, Moving shockwave,
LWR traffic model

I. INTRODUCTION

Consider a common phenomenon in freeway traffic when
there is a moving shockwave consisting of light traffic up-
stream of the shockwave and heavy traffic downstream. The
shockwave conserves traffic flow at the interface of disconti-
nuity and is caused by local changes of road situations like
uphill and downhill gradients, curves, change of speed limits.
The upstream propagation of the moving shockwave causes
more and more vehicles entering into the congested traffic.
Stabilizing the traffic congestion deals with many concerning
aspects of the traffic such as fuel consumption, driving safety
and comfort, CO2 emissions. In this paper, we prevent the

Huan Yu and Miroslav Krstic are with the Department of Mechanical and
Aerospace Engineering, University of California, San Diego, 9500 Gilman
Dr, La Jolla, CA 92093. Email: huy015@ucsd.edu, krstic@ucsd.edu

Mamadou Diagne is with the Department of Mechanical Aerospace and
Nuclear Engineering, Rensselaer Polytechnic Institute, New York, 12180,
USA. Email: diagnm@rpi.edu

Liguo Zhang is Faculty of Information Technology, Beijing University
of Technology, Beijing, 100124, China. Email: zhangliguo@bjut.edu.cn. L.
Zhang was supported by NSFC No.61873007, and BJNSF No.1182001.

upstream propagation of traffic jams by designing boundary
controllers that are implemented through traffic management
infrastructures on freeways. Ramp metering and varying speed
limit are most widely used to control traffic flux or velocity
from the boundary of a stretch of freeway so that desirable
traffic condition is achieved for inner domain of the freeway
segment.

In developing boundary control strategies through ramp
metering and varying speed limit, many recent efforts
[5],[13],[21],[23],[24] are focused on macroscopic traffic mod-
els governed by PDE system. These model-based controllers
regulate the evolution of traffic densities and velocities in
order to dissipate traffic congestions on freeways. For instance,
[21],[23] achieve the stabilization of stop-and-go traffic by
second-order PDE model using boundary control.

Traffic discontinuity can be caused by various inhomo-
geneities of freeway or vehicles. Some studies consider it as
a moving traffic flux constraint [9],[19] due to a reduction
of road capacity. Slow moving vehicles, also known as mov-
ing bottlenecks, are represented in [6],[16],[22] with ODEs
governing the velocity of slow vehicles. These are out of
the scope of this paper and relevant to the controllability
problem with boundary actuation. In this paper, we consider
the situation where road capacity is conserved but shockwaves
form due to changes of the road attributes. Dense traffic
appears downstream of the shockwave front and the front of
density discontinuity keeps moving upstream, driven by the
flux discontinuity. The upstream propagation of the moving
shockwave causes that traffic jams fully occupy the freeway
segment. We aim to use boundary control inputs to ”freeze”
the upstream propagation of the traffic shockwave such that
the total traffic congestion is reduced for the freeway segment.

In this work, we adopt the seminal Lighthill, Whitham
and Richards (LWR) model which is a first-order, hyperbolic
macroscopic PDE that describes the evolution of density.
It is simple yet very powerful to describe the formation,
dissipation and propagation of traffic shockwaves on the
freeway. The shockwave consists of upstream, downstream
traffic and a moving interface. The upstream and downstream
traffic densities are governed by the LWR PDE models and
the interface position is governed by Rankine-Hugoniot jump
condition, leading to a density state-dependent nonlinear ODE.
Therefore, we are dealing with a PDE-ODE coupled system,
where the ODE state is dependent on the PDE states at
the moving interface. The traffic flow is actuated at both
boundaries of a freeway segment and are realized with on
ramp metering. The control objective is to drive the moving
interface to a desirable location and traffic states to steady
values through bilateral boundary control inputs.
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Fig. 1. Traffic moving shockwave front on freeway, the arrows represent
propagation directions of density variations. In LWR model, the propagation
directions are given by the characteristic speeds of density Q′(ρ).

Boundary control of PDE with state-dependent ODE sys-
tems has been intensively studied over the past few years.
Backstepping control design method is used in solving these
problems. In parabolic PDE system, the problem is known as
Stefan problem with application to control of screw extruder
for 3D Printing [15] and arctic sea ice temperature estima-
tion [14]. In hyperbolic PDE system, theoretical results have
been studied by [1],[3],[4],[11],[12],[18]. With application,
[7] develops boundary control piston position in inviscid
gas and [10] develops the control of a mass balance in
screw extrusion process. Other applications include vibration
suppression of mining cable elevator [20], control of Saint-
Venant equation with hydraulic jumps [2]. Using Lyapunov
analysis, [1] achieves the exponential stability in H2 norm
of a shock steady state for the inviscid Burgers equation by
choosing appropriate feedback boundary conditions. However,
the proposed method in [1] cannot be directly applied to the
traffic shockwave problem due to the constraint on boundary
feedback coefficients. Moreover, the application of the pre-
dictor feedback and backstepping control method in traffic
shockwave problem has never been discussed before. In this
paper, we propose state feedback bilateral controllers that
achieves the local stability of the closed-loop system in H1

norm with an arbitrarily fast convergence rate.
The contribution of this paper is twofold. This is the

first theoretical result on applying backstepping methd to
control two PDE state-dependent input delays to an ODE.
Predictor-based state feedback design approach is adopted
following [11],[18]. In fact, [18] shows a predictor feedback
design for multiple constant delayed inputs to linear time-
invariant systems while [11] considers a single implicitly
defined state-dependent input delay to nonlinear time-invariant
systems alternatively written as a PDE-ODE cascade system.
In this work, we firstly present the predictor feedback design
for two PDE states dependent input delays to an ODE. On the
other hand, control problem of traffic moving shockwave has
never been addressed before to author’s best knowledge.

The outline of this paper: we introduce the LWR model to
describe the moving shockwave problem. Then we obtain the
state-dependent PDE-ODE model after linearization around
steady states. The predictor state feedback control design
follows and using Lyapunov analysis, we prove the local
exponential stability of the closed-loop system. The result is
validated with a numerical simulation.

II. PROBLEM STATEMENT

The moving shockwave front is the head of a shockwave,
segregating traffic on a segment of freeway into two different
schemes. The upstream traffic of the shockwave front is free
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Fig. 2. Fundamental digram of traffic density and traffic flux relation.

and the downstream is congested, as shown in Fig.1. The traffic
densities are described with the LWR model.

A. LWR traffic model
Traffic density ρ(x, t) is governed by the following first-

order nonlinear hyperbolic PDE, where x ∈ [0, L], t ∈ [0,∞),

∂tρ+Q′(ρ)∂xρ =0, (1)

where Q(ρ) is a fundamental diagram which shows the equi-
librium relation of density and traffic flux. The fundamental
diagram Q(ρ) is defined as Q(ρ) = ρV (ρ). The equilibrium
velocity V (ρ) is an affine decreasing function of density which
we choose the following Greenshield’s model,

V (ρ) = vm

(
1− ρ

ρm

)
, (2)

where vm is the maximum speed, ρm is the maximum density.
The Greenshield’s model V (ρ) yields a strictly concave fun-
damental diagram Q(ρ), shown in Fig. 2. The concavity of the
fundamental diagram guarantees the hyperbolicity of the LWR
model and the control designed proposed in this paper could be
extended second-order traffic PDE models and other choices
of strictly concave fundamental diagram. The jump density
ρjump segregates densities into two sections, free regime on
the left and congested regime on the right.

In the LWR PDE (1), density variations propagate with the
characteristic speed Q′(ρ). The free regime with light traffic,
equivalently, ρf < ρjump, has its density variations transported
downstream with Q′(ρ)|ρ=ρf

= V (ρf) + ρfV
′(ρf) > 0,

while the congested regime with denser traffic, namely, ρc >
ρjump has its density variations transported upstream with
Q′(ρ)|ρ=ρc = V (ρc) + ρcV

′(ρc) < 0. As shown in Fig. 1,
the moving shockwave considered here is the shock of a traffic
wave, physically representing the discontinuity of density. The
congested traffic density propagates upstream while the light
traffic density propagates downstream. Therefore, the upstream
front of the shockwave becomes steeper in propagation and
eventually, the gradient ∂xρ tends to be infinity [17]. In this
context, drivers located in the upstream front of the shock will
experience transition from the free to congested traffic. The
position of the shockwave front is later defined by an ODE
according to Rankine-Hugoniot condition.
B. Moving shockwave model

The moving shockwave model consists of upstream, down-
stream traffic densities and a moving interface located at the
position of the density discontinuity. The dynamics of the
upstream free traffic, the downstream congested traffic and
the position of the moving interface are presented below.
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Define the traffic density of the free regime as ρf(x, t)
for x ∈ [0, l(t)], t ∈ [0,+∞), and the congested regime as
ρc(x, t), for x ∈ [l(t), L], t ∈ [0,+∞), the LWR model that
describes the traffic is given by

∂tρf + ∂x(ρfvf) =0, x ∈ [0, l(t)], (3)
∂tρc + ∂x(ρcvc) =0, x ∈ [l(t), L], (4)

where l(t) ∈ [0, L] is the location of moving interface. The
density and velocity relation is given by the Greenshield’s
model (2), (i = f, c),

vi(x, t) =Vi(ρi(x, t)) = vm

(
1− ρi(x, t)

ρm

)
. (5)

Due to the flux discontinuity at the moving boundary, a
traveling vehicle leaves the free regime to enter the congested
regime. Dynamics of moving interface l(t) is derived under
the Rankine-Hugoniot condition which guarantees that the
mass of traffic flow is conserved at the moving interface. The
upstream propagation of the shockwave front is driven by the
flux discontinuity,

l̇(t) =
ρc(l(t), t)vc(l(t), t)− ρf(l(t), t)vf(l(t), t)

ρc(l(t), t)− ρf(l(t), t)
, (6)

where the initial position of the shockwave front 0 <
l(0) < L. The following inequalities for initial condi-
tions of PDEs (3),(4) are assumed: ρc(l(0), 0)vc(l(0), 0) <
ρf(l(0), 0)vf(l(0), 0), and ρc(l(0), 0) > ρf(l(0), 0). Initially,
the traffic downstream the interface is denser but with a smaller
flux which lets less vehicles to pass through while the traffic
upstream is light and let more vehicles to come in the segment.
With the above assumptions to hold, we obtain from (6) that
l̇(0) < 0. The moving interface travels upstream, driven by a
flux difference induced by the density discontinuity.

Substituting density-velocity relation (5) into (3),(4), and
(6), we have two nonlinear PDEs and an ODE coupled system
describing the dynamics of ρf(x, t), ρc(x, t) and l(t) given by

∂tρf(x, t) =− vm∂x

(
ρf(x, t)−

ρ2f (x, t)

ρm

)
, (7)

∂tρc(x, t) =− vm∂x

(
ρc(x, t)−

ρ2c(x, t)

ρm

)
, (8)

l̇(t) =vm − vm
ρm

(ρc(l(t), t) + ρf(l(t), t)). (9)

We consider the following controlled boundary condition
for the nonlinear coupled PDE-ODE system consisting of (7),
(8), and (9)

ρf(0, t) = Uin(t) + ρ⋆f , (10)
ρc(L, t) = Uout(t) + ρ⋆c , (11)

where we control the incoming and outgoing density varia-
tions of the freeway segment Uin(t) and Uout(t). The well-
posedness of the system can be proved following [1] by
defining a shock free solution to the quasilinear hyperbolic
system (7)-(9) with compatibility condition verified by the
initial conditions, which establish an equivalence relation with
the shockwave solutions of the scalar Burgers equation. Our
control objective is to stabilize both free and congested regime
traffic ρi(x, t) to uniform steady states ρ⋆i and at the same
time, the moving interface l(t) to a desirable static setpoint

l⋆. Therefore, the shockwave becomes standstill within the
freeway segment instead of moving upstream.

The incoming traffic flow needs to be in the free regime
and the outgoing traffic flow is assumed to be congested
downstream of the outlet. As mentioned in Section I, the
control of density can be realized with on-ramp metering
actuating the flux at both boundaries: we have at inlet qin(t) =
Q(ρf(0, t)), and at outlet qout(t) = Q(ρc(L, t)). In practical
implementation of the bilateral controllers, the flow variations
of qramp,in = qin(t)−Q(ρ⋆f ) and qramp,out = qout(t)−Q(ρ⋆c)
are regulated with traffic lights on ramp.

Remark 1: For model validity, we assume that there exists
a constant L > 0 such that the ODE state l(t) satisfies

0 < l(t) < L, (12)

so that (7),(8), and (9) are well-defined for x ∈ [0, L], t ∈
[0,+∞). We emphasize that the proposed control law needs
to guarantee the above condition.

III. STATE-DEPENDENT PDE-ODE MODEL

We linearize the original coupled PDE-ODE model
(ρf(x, t), ρc(x, t), l(t))-system defined in (7),(8),(9) around
steady states (ρ⋆f , ρ

⋆
c , l

⋆). The constant equilibrium setpoint
values are chosen so that the following conditions that ensure
the model validity hold

0 < ρ⋆f < ρjump < ρ⋆c < ρm, (13)
0 < l⋆ < L. (14)

At steady-state, the flux equilibrium needs to be achieved for
both sides of the moving interface,

ρ⋆f V (ρ⋆f ) = ρ⋆cV (ρ⋆c). (15)

Using condition (15), the quadratic fundamental diagram
yields that

ρ⋆f + ρ⋆c = ρm. (16)

Define the state deviations from the system reference as

ρ̃i(x, t) =ρi(x, t)− ρ⋆i , (17)
X(t) =l(t)− l⋆, (18)

where Ẋ(t) = l̇(t) is satisfied. Thus, the linearized PDE-
ODE model (7)-(9) with the boundary conditions (10) and
(11) around the system reference (ρ⋆f , ρ

⋆
c , l

⋆) is defined as the
following (ρ̃f(x, t), ρ̃c(x, t), X(t))-system

∂tρ̃f(x, t) =− u∂xρ̃f(x, t), x ∈ [0, l(t)], (19)
∂tρ̃c(x, t) =u∂xρ̃c(x, t), x ∈ [l(t), L], (20)

ρ̃f(0, t) =Uin(t), (21)
ρ̃c(L, t) =Uout(t), (22)

Ẋ(t) =− b (ρ̃f(l(t), t) + ρ̃c(l(t), t)) , (23)

where the transport speed is defined as

u = vm

(
1− 2ρ⋆f

ρm

)
, (24)

and satisfy 0 < u < vm. The constant coefficient b in ODE
is defined as b = vm

ρm
> 0. The model after linearization in

(19)-(23) is a state-dependent coupled PDE-ODE system with
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bilateral boundary control inputs from inlet and outlet. Notice
that the PDE states are linearized around the steady states,
but the ODE is dependent on PDE states and PDE states
evolve in ODE-dependent space domain. Therefore the PDE-
ODE coupled system (19)-(24) is a quasilinear system. The
nonlinearity is geometrical and induced by the phase change
between the free and congested regimes.

IV. PREDICTOR-BASED CONTROL DESIGN

In this section, we first introduce the equivalent delay
system representation to the system (19)-(23). Then, a back-
stepping transformation is applied to obtain predictor-based
state feedback controls to compensate the PDE state-dependent
delays to the ODE.

A. From coupled PDE-ODE to delay system representation
The system (19)-(23) can be represented by an unstable

ODE with two distinct state-dependent input delays. Introduce
the following state-dependent delays for the two transport
PDEs

Df(t) =
l(t)

u
, Dc(t) =

L− l(t)

u
, (25)

where l(t) = X(t) + l⋆. The PDE states at x = l(t) are
represented by

ρ̃f(l(t), t) =Uin (t−Df(t)) , (26)
ρ̃c(l(t), t) =Uout (t−Dc(t)) , (27)

where Uin(t) and Uout(t) are the boundary control inputs
defined in (21) and (22) and the representations are valid
when Remark 1 and Remark 3 hold and initial conditions are
bounded as introduced in Theorem 1 later. The assumptions
guarantee that the corresponding solution is defined for all
t ≥ 0, which implies that the moving interface l(t) stays in
the spatial domain before the control inputs reach it.

Substituting (26) and (27) into the ODE (23), the following
state-dependent input delay system representation is derived

Ẋ(t) =− b (Uin(t−Df(X(t))) + Uout(t−Dc(X(t))) .
(28)

Remark 2: If the position of the moving shock front is
close to the inlet half segment such that l(t) ∈

[
0, L

2

]
, it

holds that ∀t ∈ [0,∞), Df(t) ≤ Dc(t). As a result, delayed
inlet control input Uin (t−Df(t)) reaches the moving shock
front faster than delayed outlet control input Uout (t−Dc(t)).
If l(t) ∈

[
L
2 , L

]
, ∀t ∈ [0,∞), Df(t) ≥ Dc(t) holds. Then

Uout (t−Dc(t)) reaches the moving shock front faster than
Uin (t−Df(t)).
We introduce a new coordinate z defined as

z =


l(t)− x

u
, x ∈ [0, l(t)],

x− l(t)

u
, x ∈ [l(t), L],

(29)

and new variables ϱ̃f(z, t) and ϱ̃c(z, t) defined in z-
coordinate. The transformations between ρ̃f(x, t), ρ̃c(x, t) and
ϱ̃(z, t), ϱ̃c(z, t) are given by

ϱ̃f(z, t) =ρ̃f(l(t)− uz, t), z ∈ [0, Df(t)], (30)
ϱ̃c(z, t) =ρ̃c(l(t) + uz, t), z ∈ [0, Dc(t)], (31)

and the associated inverse transformations of (30) and (31) are
given by

ρ̃f(x, t) =ϱ̃f

(
l(t)− x

u
, t

)
, x ∈ [0, l(t)], (32)

ρ̃c(x, t) =ϱ̃c

(
x− l(t)

u
, t

)
, x ∈ [l(t), L]. (33)

Using (30) and (31), the original system (19)-(23) is rewritten
in the new z-coordinate as

∂tϱ̃f(z, t) =

(
1− l̇(t)

u

)
∂z ϱ̃f(z, t), z ∈ [0, Df(t)], (34)

∂tϱ̃c(z, t) =

(
1 +

l̇(t)

u

)
∂z ϱ̃c(z, t), z ∈ [0, Dc(t)], (35)

ϱ̃f(Df(t), t) =Uin(t), (36)
ϱ̃c(Dc(t), t) =Uout(t), (37)

with the ODE state l(t) = X(t) + l⋆ given by

Ẋ(t) = −b (ϱ̃f(0, t) + ϱ̃c(0, t)) . (38)

Remark 3: The proposed control laws Uin and Uout need to
designed such that the following condition for the ODE state
l(t) is guaranteed

−u < l̇(t) < u, (39)

so that well-posedness of the system (34)-(38) for x ∈ [0, L],
t ∈ [0,+∞) is guaranteed.

Based on the above system in delay representation, we
construct the following predictor-based backstepping transfor-
mation so that the delays are compensated with the control
design.

B. Predictor-based backstepping transformation

We consider the following backstepping transformation,
motivated by the predictor-based transformation for delay
representation ϱf(z, t) and ϱc(z, t) defined in (34)-(37),

ωf(z, t) =ϱ̃f(z, t)−Kf

(
X(t)− b

∫ z

0

ϱ̃f(ξ, t)dξ

−b

∫ min{Dc(t),z}

0

ϱ̃c(ξ, t)dξ

)
, z ∈ [0, Df(t)], (40)

ωc(z, t) =ϱ̃c(z, t)−Kc

(
X(t)− b

∫ z

0

ϱ̃c(ξ, t)dξ

−b

∫ min{Df (t),z}

0

ϱ̃f(ξ, t)dξ

)
, z ∈ [0, Dc(t)], (41)

where Kf ,Kc > 0 are positive constant gain kernels. The
above transformation in the original PDE state variables
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ρf(x, t) for x ∈ [0, l(t)] and ρc(x, t) for x ∈ [l(t), L], is given
by

wf(x, t) =ρ̃f(x, t)−Kf

(
X(t)− b

u

∫ l(t)

x

ρ̃f(ξ, t)dξ

− b

u

∫ min{L,2l(t)−x}

l(t)

ρ̃c(ξ, t)dξ

)
, x ∈ [0, l(t)],

(42)

wc(x, t) =ρ̃c(x, t)−Kc

(
X(t)− b

u

∫ x

l(t)

ρ̃c(ξ, t)dξ

− b

u

∫ l(t)

max{0,2l(t)−x}
ρ̃f(ξ, t)dξ

)
, x ∈ [l(t), L].

(43)

• For the case Df(t) ≤ Dc(t), it follows that l(t) ∈
[
0, L

2

]
and the following holds

x ∈ [0, l(t)] =⇒ min{L, 2l(t)− x} = 2l(t)− x. (44)

• For the case Df(t) ≥ Dc(t), it follows that l(t) ∈
[
L
2 , L

]
,

the following holds

x ∈ [l(t), L] =⇒ max{0, 2l(t)− x} = 2l(t)− x.
(45)

Later on, two pairs of state feedback controllers are obtained
respectively for l(t) ∈

[
0, L

2

]
and l(t) ∈

[
L
2 , L

]
. The inverse

transformation of (42),(43) is given by

ρ̃f(x, t) =wf(x, t) +Kf

(
X(t)− b

u

∫ l(t)

x

wf(ξ, t)dξ

− b

u

∫ min{L,2l(t)−x}

l(t)

wc(ξ, t)dξ

)
, x ∈ [0, l(t)],

(46)

ρ̃c(x, t) =wc(x, t) +Kc

(
X(t)− b

u

∫ x

l(t)

wc(ξ, t)dξ

− b

u

∫ l(t)

max{0,2l(t)−x}
wf(ξ, t)dξ

)
, x ∈ [l(t), L]. (47)

The derivation of the inverse transformation is straightforward
following [11], [18] and thus omitted here. Let us denote the
above transformations as

ρ̃f = Tf [wf , wc], (48)
ρ̃c = Tc[wf , wc]. (49)

At the moving interface, we have

wf(l(t), t) =ρ̃f(l(t), t)−KfX(t), (50)
wc(l(t), t) =ρ̃c(l(t), t)−KcX(t). (51)

We take temporal and spatial derivative on both sides of
(42),(43) and substitute into the PDE-ODE original system
(19)-(23). With the designed bilateral boundary controllers Uin

and Uout introduced later, we obtain the target system satisfied
by wf(x, t) and wc(x, t),

∂twf + u∂xwf =
Kfb

u
l̇(t)(g(t) + 2ϵc(x, t)), x ∈ [0, l(t)],

(52)

∂twc − u∂xwc =
Kcb

u
l̇(t)(g(t)− 2ϵf(x, t)), x ∈ [l(t), L],

(53)
wf(0, t) =0, (54)
wc(L, t) =0, (55)

Ẋ(t) =− aX(t)− b (wc(l(t), t) + wf(l(t), t)) ,
(56)

where (54),(55) are the controlled boundaries and the constant
coefficient a = b(Kf + Kc) > 0 is obtained by substituting
(50),(51) into (23), given b,Kf ,Kc > 0. The time-varying
term g(t) is defined as

g(t) =(Kf −Kc)X(t) + wf(l(t), t)− wc(l(t), t), (57)

and the space and time-varying terms ϵc(x, t) and ϵf(x, t) are
given by

ϵc(x, t) =ρ̃c(2l(t)− x, t) = Tc[wf , wc](2l(t)− x, t), (58)
ϵf(x, t) =ρ̃f(2l(t)− x, t) = Tf [wf , wc](2l(t)− x, t). (59)

We assume that densities outside freeway segment [0, L] are at
steady states, therefore ρ̃c(2l(t)−x, t) = 0 when 2l(t)−x > L,
and ρ̃f(2l(t) − x, t) = 0 when 2l(t) − x < 0. Hence, the
followings hold for ϵf(x, t) and ϵc(x, t),{

ϵf(x, t) = 0, l(t) ∈ (0, L/2) and x ∈ [2l(t), L],

ϵc(x, t) = 0, l(t) ∈ (L/2, L) and x ∈ [0, 2l(t)− L].

(60)

Otherwise, ϵf(x, t) and ϵc(x, t) are given by expressions in
(58) and (59). The bilateral state feedback boundary actuations
for inlet and outlet of the segment are derived from (42),(43)
and (54),(55) as

Uin(t) =Kf

(
X(t)− b

u

∫ l(t)

0

ρ̃f(ξ, t)dξ −
b

u

∫ min{L,2l(t)}

l(t)

ρ̃c(ξ, t)dξ

)
,

(61)

Uout(t) =Kc

(
X(t)− b

u

∫ L

l(t)

ρ̃c(ξ, t)dξ −
b

u

∫ l(t)

max{0,2l(t)−L}
ρ̃f(ξ, t)dξ

)
.

(62)

We obtain two pairs of controller designs for l(t) ∈
[
0, L

2

]
and

l(t) ∈
[
L
2 , L

]
, respectively. When l(t) ∈

[
0, L

2

]
, it holds true

that min{L, 2l(t)} = 2l(t),max{0, 2l(t)− L} = 0 and when
l(t) ∈

[
L
2 , L

]
one gets min{L, 2l(t)} = L,max{0, 2l(t) −

x} = 2l(t).
In addition, when l(t) = L

2 , controller integral forms
become identical for l(t) ∈

[
0, L

2

]
and l(t) ∈

[
L
2 , L

]
: Uin(t) =

Kf

(
X(t)− b

u

∫ L
2

0
ρ̃f(ξ, t)dξ − b

u

∫ L
L
2
ρ̃c(ξ, t)dξ

)
, and Uout(t) =

Kc

(
X(t)− b

u

∫ L
2

0
ρ̃f(ξ, t)dξ − b

u

∫ L
L
2
ρ̃c(ξ, t)dξ

)
. Note that the

bilateral control input continuously switches between the
above control laws when the moving interface position passes
through the middle of the freeway segment.
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Due to the invertibility of the transformation in (42),(43),
stability of the target system (wc(x, t), wf(x, t), X(t)) and sta-
bility the plant (ρ̃f(x, t), ρ̃c(x, t), X(t)) are equivalent. In the
next section, we apply Lyapunov analysis to prove the stability
of the target system. Define the H1-norm ||f(·, t)||H1

(a,b)
as

||f(·, t)||H1
(a,b)

=

√(∫ b

a
f2(x, t) + f2

x(x, t)dx
)
. We now state

the main result of the paper.
Theorem 1: Consider a closed-loop system consisting of the

PDE-ODE system (19)-(23) and the bilateral full-state feed-
back control laws for inlet and outlet (61),(62). For any system
reference (ρ⋆f , ρ

⋆
c , l

⋆) ∈ H1((0, l⋆);R) × H1((l⋆, L);R)) ×
(0, L) which satisfies conditions (13), (14) and (16), and for
any given L > 0, there exist c > 0, γ > 0, ζ > 0 such that
if the initial conditions of the system (ρf(x, 0), ρc(x, 0), l(0))
satisfy Z(0) < ζ, local exponential stability with an arbitrary
fast convergence rate of the closed-loop system with bilateral
control laws holds ∀t ∈ [0,∞), namely,

Z(t) ≤ ce−γtZ(0), (63)

where Z(t) is defined as Z(t) = ||ρf(x, t) − ρ⋆f ||H1
[0,l(t)]

+

||ρc(x, t)− ρ⋆c ||H1
[l(t),L]

+ |l(t)− l⋆|2, and conditions (12),(39)
are satisfied for model validity.

V. PROOF OF THEOREM 1
In the proof, local stability of the closed-loop system in the

H1 sense is shown with Lyapunov analysis and the conditions
(12),(39) are guaranteed by our control design. The proof of
Theorem 1 is established through following steps: we firstly
prove the local stability of the target system (52)-(56) given
time interval ∀t ∈ [0, t⋆) under the assumption that conditions
(12),(39) are satisfied. Then we prove that with the initial
conditions of states variables bounded, the local exponential
stability of the above target system holds for ∀t ∈ [0,+∞)
with the assumption removed. This is achieved by comparison
principle and contradiction proof in Lemma 3. In the end, the
stability analysis of the target system yields the stability of
original PDE-ODE system in (7)-(9).

Let us define the Lyapunov functional

V (t) =V1(t) + V2(t) + V3(t) + V4(t) + c5V5(t), (64)

where λ > 0 with the component Lyapunov functions

V1(t) =

∫ l(t)

0

e−c1xw2
f (x, t)dx, (65)

V2(t) =

∫ L

l(t)

ec2(x−L)w2
c (x, t)dx, (66)

V3(t) =

∫ l(t)

0

e−c3x∂xw
2
f (x, t)dx, (67)

V4(t) =

∫ L

l(t)

ec4(x−L)∂xw
2
c (x, t)dx, (68)

V5(t) =X(t)2. (69)

Lemma 1: Assume ∃t⋆ > 0 such that for all t ∈ [0, t⋆] the
conditions (12),(39) are satisfied, then there exists σ > 0 such
that the following holds ∀t ∈ [0, t⋆),

V̇ (t) ≤ −σV + τV 3/2 + θV 2. (70)

Proof: Taking time derivative of the Lyapunov function (64)
along the solution of the target system (52)-(56) and using the
inequality (39), we have

V̇1(t)=− c1u

∫ l(t)

0

e−c1xw2
f (x, t)dx

+
2Kfb

u
l̇(t)g(t)

∫ l(t)

0

e−c1xwf(x, t)dx

+
4Kfb

u
l̇(t)

∫ l(t)

0

e−c1xϵc(x, t)wf(x, t)dx, (71)

V̇2(t)=− c2u

∫ L

l(t)

ec2(x−L)w2
c (x, t)dx

+
2Kcb

u
l̇(t)g(t)

∫ L

l(t)

ec2(x−L)wc(x, t)dx

− 4Kcb

u
l̇(t)

∫ L

l(t)

ec2(x−L)ϵf(x, t)wc(x, t)dx, (72)

V̇3(t) =− c3u

∫ l(t)

0

e−c3x∂xw
2
f (x, t)dx+ u∂xw

2
f (0, t)

+
4Kfb

u
l̇(t)

∫ l(t)

0

e−c3x∂xϵc(x, t)∂xwf(x, t)dx,

(73)

V̇4(t) =− c4u

∫ L

l(t)

ec4(x−L)∂xw
2
c (x, t)dx+ u∂xw

2
c (L, t)

− 4Kcb

u
l̇(t)

∫ L

l(t)

ec4(x−L)∂xϵc(x, t)∂xwc(x, t)dx,

(74)

V̇5(t) =− 2aX(t)2 − 2b (wc(l(t), t) + wf(l(t), t))X(t).
(75)

Using the boundary conditions (54)(55), Agmon’s inequality,
Young’s inequality and Poincaré inequality, we obtain the
following

w2
f (l(t), t) ≤ ||wf ||2∞ ≤ 4||∂xwf ||22 ≤ 4ec3LV3, (76)

w2
c (l(t), t) ≤ ||wc||2∞ ≤ 4||∂xwc||22 ≤ 4ec4LV4. (77)

Plugging the above inequalities into the ODE (56) yields that
there exists δ > 0 such that

|l̇(t)| ≤ a
√

V5 + 2b(
√

ec3LV3 +
√
ec4LV4) ≤ δ

√
V . (78)

Using Young’s inequality, Cauchy-Schwarz inequality for (57)
and (76),(77), there exists µ > 0,

g(t)2 ≤ 2((Kf −Kc)
2V5 + 4ec3LV3 + 4ec4LV4) ≤ µV,

(79)

By definition of ϵc(x, t) in (58), there exist η > 0, such that∫ l(t)

0

ϵ2c(x, t)dx ≤ ηV. (80)

It follows that

V̇1(t) ≤− c1uV1 +
2Kfb

u
|l̇(t)|

(
g2(t) +

∫ l(t)

0

w2
f (x, t)dx

)

+
4Kfb

u
|l̇(t)|

(∫ l(t)

0

ϵ2c(x, t)dx+

∫ l(t)

0

w2
f (x, t)dx

)
,

(81)
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Plugging (79) and (80) into the above inequality, there exists
κ1 > 0 such that

V̇1(t) ≤− c1uV1 + κ1V
3/2, (82)

Taking total time derivative of boundary condition (54) yields,

∂xwf(0, t) =
Kfb

u2
l̇(t)(g(t) + 2ϵc(0, t)), (83)

where it holds that ϵc(0, t) = 0, according to the definition
(60). Given the definition of ϵc(x, t) in (58), there exist ν > 0
such that ∫ l(t)

0

∂xϵ
2
c(x, t)dx ≤ νV. (84)

Using Young’s inequality and plugging (78), (79) into (83),
we obtain that there exists θ1 > 0 such that

∂xw
2
f (0, t) ≤

K2
c b

2

u4
|l̇(t)|2g2(t) ≤ θ1V

2, (85)

Plugging (76), (78), (84) and (85) into (73), we obtain that
there exists κ3 > 0 such that

V̇3(t) ≤− uV3 + κ3V
3/2 + θ1V

2, (86)

In the same fashion, we could obtain that there exist κ2, κ4 > 0
and θ2 > 0 such that

V̇2(t) ≤− uV2 + κ2V
3/2, (87)

V̇4(t) ≤− uV4 + κ4V
3/2 + θ2V

2, (88)

For the last Lyapunov component, the following holds

V̇5(t) ≤−
(
2a− a

2
− a

2

)
V5 +

8ec3Lb2

a
V3 +

8ec4Lb2

a
V4.

(89)

Substituting inequalities (82) and (86)-(89) into (64), it follows
that

V̇ (t) ≤− c1uV1 − c2uV2 −
(
c3u− c5

8ec3Lb2

a

)
V3

−
(
c4u− c5

8ec4Lb2

a

)
V4 − c5aV5 + τV 3/2 + θV 2.

(90)

where τ = κ1+κ2+κ3+κ4 > 0 and θ = θ1+θ2. We choose
c5 such that c5 = min

{
c3au
16b2 e

−c3L, c4au
16b2 e

−c4L
}
, thus it holds

for σ = min
{
c1u, c2u,

c3u
2 , c4u

2 , a
}

,

V̇ (t) ≤ −σV + τV 3/2 + θV 2. (91)

□
Lemma 2: The inequality (70) yields that for any V (0) < δ0

where δ0 = −τ+
√
τ2+2σθ
2θ , then it holds that

V̇ (t) ≤ −σ

2
V. (92)

By comparison principle, the exponential stability is satisfied
that ∀t ∈ [0, t⋆),

V (t) ≤ V (0)e−
σ
2 t < δ0. (93)

Recall a = b(Kf + Kc). the control gains Kf and Kc and
the coefficients ci, i = 1, 2, 3, 4 can be chosen arbitrarily
large such that an arbitrarily fast convergence rate σ

2 could
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Fig. 3. Evolution of the moving interface position l(t) for open-loop system
and for closed-loop system with bilateral boundary control.

be achieved, namely, rapid stabilization for the closed-loop
system.

Lemma 3: If the initial conditions of the target system
(wf(x, 0), wc(x, 0), X(0)) satisfy the following

V (0) < min{δ0, δ1, δ2}, (94)

where the positive constant δ1 is defined as

δ1 = min
{
(L− l⋆)2, (l⋆)2

}
, δ2 =

u2

δ2
. (95)

Then Lyapunov functional inequality (92) and conditions
(12),(39) hold for t ∈ [0,∞).

Proof: We assume that there exists t⋆ > 0 such that
condition (12) is satisfied for t ∈ [0, t⋆) but is violated at
t = t⋆. Given (94) and by comparison principle, the following
inequality holds

V (t⋆) ≤ V (0) < δ1. (96)

According to the definition of V (t) in (64), we obtain that
X2(t⋆) ≤ V (t⋆). Combining (95) and (96), we have

X2(t⋆) < δ1 = min
{
(L− l⋆)2, (l⋆)2

}
. (97)

Since l(t⋆) = X(t⋆) + l⋆ and 0 < l⋆ < L, we obtain from
(97) that

0 < l(t⋆) < L. (98)

We conclude that (98) contradicts the assumption that (12) is
violated at t = t⋆. Therefore, the condition (12) is guaranteed
for t ∈ [0,∞) when the initial condition V (0) satisfies (94).
By inequality (78), we have |l̇(t⋆)|2 ≤ δ2V (t⋆). Given (94),
it holds that V (t⋆) ≤ V (0) < u2

δ2 . Thus we have |l̇(t⋆)|2 < u2

and it follows that

−u < l̇(t) < u. (99)

This completes the proof Lemma 3. Due to invertibility of the
transformation in (42),(43), we conclude that the system (19)-
(23) with control laws (61),(62) is locally exponentially stable
in the H1 norm, which completes the proof of Theorem 1. □

VI. SIMULATION

We simulate the proposed control design considering a
moving traffic shockwave in a 500-meter freeway segment.
The maximum velocity is vm = 144 km/hr and maximum
density is ρm = 160 vehs/km. The initial traffic profile and
the desirable target traffic profile ρ⋆f = 32 vehs/km, ρ⋆c =
128 vehs/km, l⋆ = 0.2 km, ρjump = 80 vehs/km are shown
in Fig. 4, where the position of the shockwave front is initially
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Fig. 4. Evolution of traffic density PDE states for the open-loop system on
left and for the closed-loop system on right. Traffic density profile for initial
condition with a soft shockwave is highlighted with color red and the target
profile is that there is a shock steady state located at x = 200 m where its
upstream is free and its downstream congested, shown on the right after 50s.
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Fig. 5. Evolution of bilateral control inputs over time.

located at 330-meter and the final setpoint location is at 200-
meter, as shown in Fig. 3. The initial position of the shockwave
front is in the right-half plane of the segment while its final
position is located at the left-half plane. The control objective
is to regulate PDE states and ODE state from the initial profile
to the reference profile, as shown in Fig. 4. After around 50s,
the moving interface position stops at the setpoint location
l = 200 m with bilateral control while in open-loop system it
propagates upstream and travels out of the freeway segment
before 1 min in Fig. 3. In Fig. 4, PDE density states of the
whole segment becomes congested in the open-loop system
while the upstream traffic remains to be free in the closed-loop
system. In Fig. 5, one can observe that the bilateral control
signals also converge to zeros after around 50s. In addition,
total travel time (TTT) as TTT =

∫ 80s

0

∫ L

0
ρ(x, t)dxdt is

defined in [17] and the closed-loop system reduces the total
travel time by 12%, compared with the open-loop.

VII. CONCLUSION

This paper addresses boundary feedback control problem
of moving shockwave in congested traffic described by an
PDE-ODE system. To stabilize the coupled system to a de-
sired setpoint, we use predictor-based backstepping method to
transform the state-dependent PDE-ODE coupled system to a
target system, where the PDE state-dependent input delays to
ODE are compensated by the bilateral boundary control inputs
to PDEs. Actuations of traffic densities at both boundaries are
considered. The local exponential stability in H1 norm with an
arbitrarily fast converegence rate is achieved. For future work,
general theoretical results on multiple PDEs state-dependent
input delays cascading to a nonlinear ODE and consideration
of different characteristic speeds of the free flow and congested
flow are of authors’ interest.
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