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Delay-Adaptive Boundary Control of Coupled
Hyperbolic PDE-ODE Cascade Systems

Ji Wang and Mamadou Diagne

Abstract—This paper presents a delay-adaptive boundary con-
trol scheme for a 2× 2 coupled linear hyperbolic PDE-ODE
cascade system with an unknown and arbitrarily long input
delay. To construct a nominal delay-compensated control law,
assuming a known input delay, a three-step backstepping design
is used. To build the delay-adaptive boundary control law, the
nominal control action is fed with the estimate of the unknown
delay, which is generated from a batch least-squares identifier
that is updated by an event-triggering mechanism that evaluates
the growth of the norm of the system states. As a result of the
closed-loop system, the actuator and plant states can be regulated
exponentially while avoiding Zeno occurrences. The prescribed-
time identification of the unknown delay is also achieved. As
far as we know, this is the first delay-adaptive control result
for systems governed by heterodirectional hyperbolic PDEs. The
effectiveness of the proposed design is demonstrated in the control
application of a deep-sea construction vessel with cable-payload
oscillations and subject to input delay.

Index Terms—Hyperbolic PDEs, delay-adaptive control, event-
triggered control, least-squares identifier.

I. INTRODUCTION

A. Boundary control of coupled hyperbolic PDEs

Systems of transport partial differential equations (PDEs)
appear in many physical models, including road traffic [26],
[64], [65], water management systems [20], [21], [45], [46],
flow of fluids in oil drilling systems [14], [27], [28], and cable
vibration dynamics [53], [60]. As a result of the backstepping
design [15], [52], the sliding mode control approach [40]
and the proportional-integral (PI) controller design [51], the
theoretical results on boundary control of coupled first-order
linear hyperbolic PDEs have emerged in the last decade.
The backstepping design was further extended to that of a
n + 1 system in [44], and then to a more general coupled
transport PDE system where the number of PDEs in either
direction is arbitrary [30]. Along the same lines, studies on
the design of an adaptive estimation framework have been
proposed in [2], [3] and extended to adaptive control in [6].
However, the problem of delay-adaptive control for hyperbolic
PDEs has gone unanswered in all these last developments
as traditional designs based on swapping identifiers, passive
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identifiers, and Lyapunov functions remain difficult to exploit
for such systems.

B. Delay-compensated control of finite- and infinite-
dimensional plants

Time delays, which are well known to be detrimental to
stability [25], often exist in practical control systems. In
order to compensate for arbitrarily long delays, “avant-garde”
backstepping-based delay compensation techniques were first
developed in [35], [37]. Bottom-line, the input delay is con-
verted into a transport PDE as an infinite-dimensional repre-
sentation of the actuator state. For ODE plants, a PDE/ODE
cascade system ensues from this substitute representation of
the actuator state. The method has also been used to com-
pensate for the effect of sensor delays that oftentimes occur
in ODE plants. In comparison to many results [1], [13], [24],
which only estimate plant states, the approach proposed in
[35], [37] enables estimation of both the plant and the sensor
states when designing a feedback loop. A number of results
considering delays that are described by complex transport
actuation paths for nonlinear ODE plants were developed in
[18], [19] and the references therein.

While compensation for arbitrarily long delays is commonly
available for finite-dimensional systems, only very few exam-
ples for infinite-dimensional systems were presented, where
one pioneering result is [36] that is conceived using back-
stepping. In recent years, researchers from the PDE control
community have shifted their attention to this topic, leading
to many interesting developments that can be found in [34],
[41], [42], [48], [50]. By treating the delay as a transport
PDE, [38] presented the design of a boundary controller for
a pure wave PDE with compensation of an arbitrarily long
input delay while ensuring exponential stability for the closed-
loop system. For coupled heterodirectional hyperbolic PDEs,
in [54], a delay-compensated control scheme was designed
for a sandwich hyperbolic PDE in the presence of a sensor
delay of arbitrary length. In the same spirit, [49] proposed
a distributed input delay compensation for traffic systems
governed by coupled hyperbolic PDEs (see [47] as well). In
addition to the continuous-in-time control law, on the basis
of the event-triggered boundary control design of PDEs [23],
[22], [55], an event-triggered delay-compensated boundary
control law for coupled hyperbolic PDEs was presented in
[57]. Although the above substantial results emblematize a
major step in the field, the prior knowledge of the delay length
is a mandatory weakening factor that mitigates their viability
for many practical applications.
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Lyapunov designs have been employed to develop delay-
adaptive controllers for linear and nonlinear ODE plants [9],
[11], [12], [66], [67], [39] via backstepping-based certainty-
equivalence compensators. The primary idea behind these
contributions is to estimate the unknown delay using input-
output signals, and then adjust a pre-designed nominal con-
troller based on estimated parameters in order to achieve
convergence. In general, compared to other traditional param-
eter identifier methods like swapping or passive identifiers,
the Lyapunov technique provides better transient performance
properties. Recently, the approach has been extended to linear
reaction-diffusion PDEs with a boundary or a distributed
delayed input [61], [62], where asymptotic convergence results
are achieved. In the realm of advancing the design approach
of [61], [62], a recent result has achieved the design of
Lyapunov-based delay-adaptive boundary control for a scalar
Integral PDE [63]. As far as we are aware, the three preceding
contributions are the sole results on delay-adaptive control
for PDE plants. The method in the present contribution is
different with both the above delay-adaptive control results
and traditional adaptive control designs for hyperbolic PDEs
[6]. More precisely, our design relies on a triggered batch least-
square identifier (BaLSI), a novel approach that was initially
introduced in [31], [32], which has at least two significant
advantages over the traditional adaptive control approaches:
guaranteeing exponential regulation of the states to zero, as
well as finite-time convergence of the estimates to the true
values. This method has been applied in adaptive control of a
parabolic PDE [33], and first-order hyperbolic PDEs in [56],
[58], [59] with unknown plant parameters.

C. Contributions

• Different with the delay-robust stabilizing feedback con-
trol design for coupled first-order hyperbolic PDEs that
achieve robustness to small delays in actuation [8], the
present contribution ensures exact compensation of the
arbitrarily large unknown input delay.

• Exact identification of the unknown delay before the
prescribed time is achieved. As a result, the exponential
regulation, instead of the asymptotic one in [61], [62],
is guaranteed in the closed-loop system. Basically, after
the prescribed-time identification of the unknown param-
eter, the delay-adaptive control signal is identical to the
nominal control action (with known input delay), which
ultimately improves substantially the resulting transient
performance of the whole closed-loop system’s dynamics.

• To the best of our knowledge, our result is the first
delay-adaptive controller for coupled hyperbolic PDEs
involving an unknown and arbitrarily large input delay. In
the context of adaptive control of first-order hyperbolic
PDEs with unknown transport speeds, as compared to
[4], [5], [56], in our work the system cascaded to the
first-order hyperbolic PDE capturing actuation delay is a
class of coupled hyperbolic PDEs-ODE systems, which
is much more complicated than [4], [5], [56] where the
cascaded system is a specific scalar ODE or none, and
moreover, the finite-time identification is improved to the

prescribed-time identification of the unknown transport
speed.

D. Organization

The problem formulation is shown in Section II. The
nominal control design is presented in Section III. The design
of delay-adaptive control with piecewise-constant parameter
identification is proposed in Section IV. The main result
including the absence of a Zeno phenomenon, parameter
convergence, and exponential regulation of the states is proved
in Section V. The effectiveness of the proposed design is illus-
trated with a numerical simulation of a deep-sea construction
vessel (DCV) in Section VI. The conclusion and future work
are presented in Section VII.

E. Notation

We adopt the following notation.
• The symbol Z+ denotes the set of natural numbers includ-

ing zero, and the notation N for the set {1,2, · · ·}, i.e., the
natural numbers without 0. We also use R+ := [0,+∞).

• Let U ⊆ Rm be a set with non-empty interior and let
Ω ⊆ R be a set. By C0(U ;Ω), we denote the class of
continuous mappings on U , which takes values in Ω. By
Ck(U ;Ω), where k≥ 1, we denote the class of continuous
functions on U , which have continuous derivatives of
order k on U and take values in Ω.

• We use the notation L2(0,1) for the standard space of the
equivalence class of square-integrable, measurable func-

tions defined on (0,1) and ‖ f‖ =
(∫ 1

0 f (x)2dx
) 1

2
< +∞

for f ∈ L2(0,1).
• For an I ⊆ R+, the space C0(I;L2(0,1)) is the space of

continuous mappings I 3 t 7→ u[t] ∈ L2(0,1).
• Let u : R+× [0,1]→R be given. We use the notation u[t]

to denote the profile of u at certain t ≥ 0, i.e., (u[t])(x) =
u(x, t), for all x ∈ [0,1].

II. PROBLEM FORMULATION

Consider the potentially open-loop unstable plant governed
by the following 2×2 linear hyperbolic PDE coupled with a
linear ODE,

Ẋ(t) = AX(t)+Bw(0, t), (1)
zt(x, t) =−q1zx(x, t)+d1z(x, t)+d2w(x, t), (2)

wt(x, t) = q2wx(x, t)+d3z(x, t)+d4w(x, t), (3)

with the boundary conditions:

z(0, t) =CX(t)− pw(0, t), (4)
w(1, t) = c0U(t−D)+qz(1, t), (5)

where, q,q1,q2,d1,d2,d3,d4,c0 and p are arbitrary parameters
with q1,q2 > 0 being transport speeds, and p 6= 0, c0 6= 0. Here,
the matrix A,B,C are known, z(x, t) and w(x, t) are the PDE
state variables, X(t) ∈ Rm is the linear ODE state, U is the
control variable and D > 0 is the indiscriminately large and
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unknown input delay. We assume that the initial conditions
satisfy

z0(x),w0(x) ∈ L2(0,1), X0 ∈ Rm (6)

and consider the following assumptions.
Assumption 1: The pair A,B is controllable.
Assumption 2: Parameters p,q satisfy

|pq|emax
{

2d4
q2

,
2d1
q1

}
<

1√
2
. (7)

Assumption 3: The bounds of the unknown input delay D
are known and arbitrary, i.e.,

0 < D≤ D≤ D (8)

where positive constants D, D are arbitrary.
Our goal is to design a delay-adaptive boundary control

action, U(t), that exponentially regulates the system (1)–(5)
despite the presence of an unknown delay D whose length
is arbitrary. The plant (1)–(5) can be used to model cable-
payload oscillations in DCV, which are to be suppressed for
the purpose of accurate placement of the equipment to be
installed on the sea floor. From this application perspective,
large-distance signal transmission in the water through a set of
acoustics devices and the actuation of the hydraulic actuator
for the ship-mounted crane are subject to delays, which are
considered as an unknown delay in the control input, the cable
vibration dynamics are governed by the 2×2 hyperbolic PDE,
and the vibration dynamics of the cage are captured by the
ODE system.

III. NOMINAL DELAY-COMPENSATED CONTROL DESIGN

In order to design the nominal control law, we first construct
an infinite-dimensional representation of the actuator state by
converting the delayed input into transport PDE actuation
dynamics. Define a new variable v(x, t) as

v(x, t) =

{
U (t−Dx) if t−Dx≥ 0
0 if t−Dx < 0

then (5) is rewritten as

w(1, t) = c0v(1, t)+qz(1, t), (9)

vt(x, t) =−
1
D

vx(x, t), (10)

v(0, t) =U(t), (11)
v(x,0) = 0 (12)

for x ∈ [0,1], t ∈ [0,∞). Now, resulting from the new rep-
resentation of the actuator state, the function U(t), which
is defined as the boundary condition (11) of the transport
equation (10), is the delay-free control input to be designed
for the hyperbolic PDE-PDE-ODE cascade system consisting
of (1)–(4) combined with (9)–(12).

A. First Step: Backstepping Transformation for the 2 × 2
Coupled Hyperbolic PDE-ODE

We introduce the following backstepping transformation
[43] in order to remove the in-domain coupling destabilizing
terms from the 2×2 hyperbolic PDE system consisting of (2),
(3) and make the ODE system matrix Hurwitz:

α(x, t) =z(x, t)−
∫ x

0
φ(x,y)z(y, t)dy

−
∫ x

0
ϕ(x,y)w(y, t)dy− γ(x)X(t), (13)

β (x, t) =w(x, t)−
∫ x

0
Ψ(x,y)z(y, t)dy

−
∫ x

0
Φ(x,y)w(y, t)dy−λ (x)X(t) (14)

whose inverse is

z(x, t) =α(x, t)−
∫ x

0
φ̄(x,y)α(y, t)dy

−
∫ x

0
ϕ̄(x,y)β (y, t)dy− γ̄(x)X(t), (15)

w(x, t) =β (x, t)−
∫ x

0
Ψ̄(x,y)α(y, t)dy

−
∫ x

0
Φ̄(x,y)β (y, t)dy− λ̄ (x)X(t) (16)

to convert (1)–(4), (9) into

Ẋ(t) =AmX(t)+Bβ (0, t), (17)
α(0, t) =− pβ (0, t), (18)
αt(x, t) =−q1αx(x, t)+d1α(x, t), (19)
βt(x, t) =q2βx(x, t)+d4β (x, t), (20)

β (1, t) =c0v(1, t)+qα(1, t)+
(
λ̄ (1)−qγ̄(1)

)
X(t)

+
∫ 1

0

(
Ψ̄(1,y)−qφ̄(1,y)

)
α(y, t)dy

+
∫ 1

0

(
Φ̄(1,y)−qϕ̄(1,y)

)
β (y, t)dy. (21)

The gain vector K is selected so that

Am = A+BKT (22)

is Hurwitz.
The conditions on the kernels φ(x,y), ϕ(x,y), γ(x), Ψ(x,y),

Φ(x,y), λ (x) and φ̄(x,y), ϕ̄(x,y), γ̄(x), Ψ̄(x,y), Φ̄(x,y), λ̄ (x)
in the backstepping transformations (13)–(16), which are
obtained by matching the original system (1)–(5) and the
intermediate system (17)–(21), are shown in the part 1 of
Appendix A, and the well-posedness of the kernel conditions
has been proved in Theorem 4.1 of [43].

B. Second Step: Transformation of the Actuator States

With the purpose of removing the integral terms and ODE
state X(t) from the PDE boundary condition (21), we define
the following change of coordinate

u(x, t) =v(x, t)+
∫ 1

0
K1(x,y)α(y, t)dy+

∫ 1

0
K2(x,y)β (y, t)dy

+η(x)X(t) (23)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3399629

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on September 09,2024 at 02:19:28 UTC from IEEE Xplore.  Restrictions apply. 



4

which enables one to map the actuator dynamics given by (10),
(11), and (21) into the following equations

β (1, t) =c0u(1, t)+qα(1, t), (24)
ut(x, t) =−dux(x, t)+q2K2(x,1)c0u(1, t), (25)

u(0, t) =U(t)+
∫ 1

0
K1(0,y)α(y, t)dy

+
∫ 1

0
K2(0,y)β (y, t)dy+η(0)X(t), (26)

where
d =

1
D
.

The detailed computation and conditions of the kernels
K1(x,y),K2(x,y),η(x) are given in the part 2 of Appendix A.

C. Third Step: Backstepping Transformation for the Resulting
u-PDE

To remove the boundary nonlocal term q2K2(x,1)c0u(1, t)
in the transport PDE (25), we apply the following mapping

u(x, t) = û(x, t)+
∫ 1

x
R(x,y)û(y, t)dy (27)

which converts (24)–(26) into

β (1, t) =c0û(1, t)+qα(1, t), (28)
ût(x, t) =−dûx(x, t), (29)
û(0, t) =0, (30)

with the nominal control input defined as

U(t) =−
∫ 1

0
K1(0,y;D)α(y, t)dy−

∫ 1

0
K2(0,y;D)β (y, t)dy

+
∫ 1

0
R(0,y;D)û(y, t)dy−η(0;D)X(t). (31)

The conditions of the kernel R(x,y) are shown in the part 3 of
Appendix A. Writing D after “;” in (31) emphasizes the fact
that these functions are parameterized by the delay D. The
inverse transformation of (27) can be found as

û(x, t) = u(x, t)+
∫ 1

x
P(x,y)u(y, t)dy, (32)

where the conditions of P(x,y) are given in the part 3 of
Appendix A as well.

D. Stability result of nominal delay-compensated control

The flow diagram of the nominal delay-compensated control
is shown in Figure 1. In a nutshell, the prior transformations
convert the original system that consists of (1)–(4), (9)–(12)
into the target system that consists of (17)–(20), (28)–(30).
The nominal control input (31) is rewritten with respect to the
original state variables as follows

U(t) =
∫ 1

0
M1(y;D)z(y, t)dy+

∫ 1

0
M2(y;D)w(y, t)dy

+
∫ 1

0
M3(y;D)v(y, t)dy+M4(D)X(t), (33)

where the controller gains Mi, i = 1, · · · ,4 are given in Ap-
pendix B, which includes the delay D.

The stability result of the nominal delay-compensated con-
trol is stated as follows.

Theorem 1: For the known delay D, with arbitrary ini-
tial data (z[0],w[0])T ∈ L2(0,1), X(0) ∈ Rm, considering the
closed-loop system consisting of the plant (1)–(4), (9)–(12)
and the nominal controller (33), the exponential stability of
the closed-loop system is obtained in the sense that there exist
positive constants ϒ,λ1 such that

Ω(t)≤ ϒΩ(0)e−λ1t , t ≥ 0, (34)

where Ω(t) is defined as

Ω(t) = ‖z[t]‖2 +‖w[t]‖2 +‖v[t]‖2 + |X(t)|2. (35)

Proof: Define Lyapunov function V (t) as

V (t) =
rd

2
XT (t)P1X(t)+

ra

2

∫ 1

0
eδx

β (x, t)2dx

+
1
2

∫ 1

0
e−δx

α(x, t)2dx+
rc

2

∫ 1

0
e−xû(x, t)2dx, (36)

where a positive definite matrix P1 = P1
T is the solution to

the Lyapunov equation AT
mP1 +P1Am = −Q1 for some Q1 =

Q1
T > 0, and where δ ,ra,rc,rd satisfy

e−2max
{

2d4
q2

,
2d1
q1

}
> e−2δ > 2p2q2, (37)

q1

2q2q2 e−2δ ≥ ra >
p2q1

q2
, (38)

rc ≥ 2D̄q2raeδ c2
0, (39)

0 < rd ≤
λmin(Q1)

2|P1B|2
(
q2ra− p2q1

)
. (40)

Please note that e−2max
{

2d4
q2

,
2d1
q1

}
> 2p2q2 holds in (37) under

Assumption 2, and q1
2q2q2 e−2δ > p2q1

q2
holds in (38) due to the

right inequality in (37), which means the existence of δ ,ra
satisfying (37), (38). It is then straightforward to obtain rc,rd
by (39), (40), where the positiveness of the right-hand side of
(40) is ensured by the right inequality in (38). Therefore, there
exists a solution δ ,ra,rc,rd satisfying (37)–(40).

Following the calculation in Appendix D and using the norm
estimate (D.10), we have

ξ1ξ3Ω(t)≤V (t)≤ ξ2ξ4Ω(t) (41)

where ξ1,ξ2 are given in (D.11), (D.12), and

ξ3 =
1
2

min
{

rdλmin(P1),ra,e−δ ,rce−1
}
, (42)

ξ4 =
1
2

max
{

rdλmax(P1),raeδ ,1,rc

}
, (43)

where λmin(P1) is the smallest eigenvalue of P1.
Taking the derivative of (36) along (17)–(20), (28)–(30),

and applying Young’s inequality and the Cauchy-Schwarz
inequality, the following estimate holds for all t ≥ 0:

V̇ (t)≤− rd

4
λmin(Q1)|X(t)|2

−
(

1
2

q1e−δ −q2raeδ q2
)

α(1, t)2

−
(

1
2

q2ra−
rd |P1B|2

λmin(Q1)
− p2q1

2

)
β (0, t)2
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Fig. 1: The flow diagram of the nominal delay-compensated control design.

− ra

(
1
2

δq2−d4

)∫ 1

0
eδx

β (x, t)2dx

−
(

1
2

δq1−d1

)∫ 1

0
e−δx

α(x, t)2dx

−
( rc

2D
−q2raeδ c2

0

)
û(1, t)2

− rc

2D

∫ 1

0
exû(x, t)2dx. (44)

Recalling conditions (37)–(39) on δ , ra, rc, and rd , there exists
a sufficiently small positive constant λ1, such that

V̇ (t)≤−λ1V (t), (45)

where

λ1 = min
{

λmin(Q1)

2λmax(P1)
,δq2−2d4,δq1−2d1,

1
D

}
> 0. (46)

Recalling (41), we then obtain (34) where the positive constant
ϒ is given as

ϒ =
ξ2ξ4

ξ1ξ3
. (47)

The proof of the theorem is complete.
Next, we will design a delay-adaptive controller considering

the nominal control action (33) fed with an estimate D̂ that
is given by an update law resulting from a triggered batch
least-square identifier of the unknown delay D.

IV. DELAY-ADAPTIVE CONTROL DESIGN

Before presenting the controller, we propose the design of a
triggered batch least-squares identifier for the unknown delay,
in the following two subsections.

A. Triggering mechanism

The triggering mechanism for the batch least-squares iden-
tifier is defined as

ti+1 =


min

{
inf
{

t > ti : Ω(t) = (1+a)ϒ̂(D̂(ti))Ω(ti)
}
,

ti +T
}
, f or Ω(ti) 6= 0

ti +T, f or Ω(ti) = 0
(48)

where the positive design parameter a is free, another positive
design parameter

T ≤ Tf

2
(49)

is the maximum dwell time between two adjacent triggering
time instants, and the free design parameter Tf > 0 is the
prescribed time of identifying the unknown delay. The function
Ω(t) is given in (35). The function ϒ̂(D̂(ti)) ≥ 1 is the over-
shoot coefficient that is associated with the system transient
and is obtained by replacing the unknown D with D̂(ti) in ϒ

which is defined in (47) (please note that ξ1 and ξ2 in (47)
depend on the delay D through the delay-dependent kernel
functions K1,K2,η ,R,P included in (D.11) and (D.12). See
Appendix D for further details).

B. Least-squares identifier for the unknown delay

Now, we design the identifier which stands as the update
law of the estimated delay D̂. According to (10), for τ > 0
and n = 1,2, · · · , the following equality holds:

D
d

dτ

∫ 1

0
sin(xπn)v(x,τ)dx = πn

∫ 1

0
cos(xπn)v(x,τ)dx.

(50)

Integrating (50) from 0 to t, yields

D
∫ 1

0
sin(xπn)v(x, t)dx = πn

∫ t

0

∫ 1

0
cos(xπn)v(x,τ)dxdτ

(51)

where (12) has been recalled. Straightforwardly, (51) can be
written as

fn(t) = Dgn(t), (52)

where

fn(t) = πn
∫ t

0

∫ 1

0
cos(xπn)v(x,τ)dxdτ, (53)

gn(t) =
∫ 1

0
sin(xπn)v(x, t)dx, (54)

for n ∈ N. Define the function hi,n by the formula:

hi,n(`) =
∫ ti+1

µi+1

( fn(t)− `gn(t))2dt, i ∈ Z+,n ∈ N, (55)

and time instant µi+1 as

µi+1 := min{tg : g ∈ {0, . . . , i}, tg ≥ ti+1− ÑT}, (56)

where the positive integer Ñ ≥ 1 is a free design parameter
(in practice, a lager Ñ means a bigger set of data used in
the least-squares identifier, which makes the identifier more
robust with respect to measurement errors), and where the
positive constant T is the maximum dwell time according to
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(48). From (52), one can deduce that the function hi,n(`) in
(55) has a global minimum hi,n(D) = 0. Then, using Fermat’s
theorem (vanishing gradient at extrema), the following matrix
equation hold for every i ∈ Z+ and n ∈ N:

Hn(µi+1, ti+1) = Gn(µi+1, ti+1)D (57)

where

Hn(µi+1, ti+1) =
∫ ti+1

µi+1

gn(t) fn(t)dt, (58)

Gn(µi+1, ti+1) =
∫ ti+1

µi+1

gn(t)2dt. (59)

Indeed, (57) is obtained by differentiating the functions hi,n(`)
defined by (55) with respect to `, and evaluating the derivative
(zero) at the global minimum ` = D. Using (57)–(59), the
following delay identifier is constructed:

D̂(ti+1) = argmin
{
|`− D̂(ti)|2 : D≤ `≤ D,

Hn(µi+1, ti+1) = Gn(µi+1, ti+1)`, n = 1,2, · · ·
}
, i ∈ Z+.

(60)

Remark 1 (Implementation of the identifier):
Implementation of the identifier begins with calculating
Hn(µi+1, ti+1), Gn(µi+1, ti+1) from n= 1, i= 0, i.e., H1(µ1, t1),
G1(µ1, t1), using (58), (59), (53), (54). If G1(µ1, t1) 6= 0, it
implies that ` belongs to a singleton set, i.e., ` = H1(µ1,t1)

G1(µ1,t1)
.

It is followed that the output of the identifer (60) at t1 is
D̂(t1) =

H1(µ1,t1)
G1(µ1,t1)

. If G1(µ1, t1) = 0, we continue to calculate
H,G with n = 2, i = 0, i.e., H2(µ1, t1), G2(µ1, t1), and then
evaluate the value of G2(µ1, t1). Similarly, if G2(µ1, t1) 6= 0,
the output of the identifier at t1 is D̂(t1) = H2(µ1,t1)

G2(µ1,t1)
. If

G2(µ1, t1) = 0, then move to calculate the case of n = 3,
i = 0, i.e., H3(µ1, t1), G3(µ1, t1). Repeating the above steps,
until we find a Gn(µ1, t1) 6= 0 for a certain n, the output of
the identifier at t1 is D̂(t1) = Hn(µ1, t1)/Gn(µ1, t1). For saving
the computation time, we can set an upper limit n̄ for n. That
is, if Gn(µ1, t1) = 0 for all n = 1, · · · , n̄, we then stop the
seeking at the updating time t1 and consider ` belongs to the
original set {` ∈ R : D≤ `≤ D} which leads to the output of
the identifier is equal to the estimate at the last time instant,
i.e., D̂(t1) = D̂(t0), according to (60). The same computation
process is followed for the subsequent updating time instants
t2, t3, . . .. For many practical applications, such as simulating
a deep-sea construction vessel, locating non-zero values
of Gn(µi+1, ti+1) is a straightforward task following the
algorithm described above.

Please note that even though the actuator states v(x, t) are
measurable in this full-state feedback case, for the delay
estimation, one cannot adopt the “naive” method–that is,
taking the time and spatial derivatives of the signal v(x, t) to
calculate d in (10) straightforwardly– because of the following
two reasons: 1) taking the time derivative of the measured
signals always leads to the undesired noise amplification in
practice; 2) the possible zero values of vt(x, t) accompanied
with the unknown delay D will engender singularity.

C. Delay-adaptive controller

With the sequence of time instants {ti ≥ 0}∞
i=0, i ∈ Z+

determined by the triggering mechanism (48), and the pa-
rameter identifier (60), the delay-compensated adaptive control
algorithm Ud(t) on t ∈ [ti, ti+1) is designed as

Ud(t) =



r
(

sin(ω(t− ti +
π

2ω
))−1

)
,

i f ti > Tf−2T and ti−1 ≤ Tf−2T and i≥ 1
and Ud(t)≡ 0 on t ∈ [0, ti) (61a)∫ 1

0
M1(y; D̂(ti))z(y, t)dy+

∫ 1

0
M2(y; D̂(ti))w(y, t)dy

+
∫ 1

0
M3(y; D̂(ti))v(y, t)dy

+M4(D̂(ti))X(t), otherwise (61b)

where Tf− 2T ≥ 0 according to (49). The equation (61b) is
the result of replacing the unknown delay D in the nominal
continuous-in-time feedback (33) with the estimate D̂(ti) that
is generated with the triggered batch least-squares identifier
(60). Defining the time instant ti satisfying the condition in
(61a) as tz, (61a) is an excitation implemented in a time
interval [tz, tz+1) once Ud identically zero on [0, tz) is detected,
to avoid the case that Ud(t) is identically zero on t ∈ [0, tz+1),
whose purpose is to ensure the exact identification of the
unknown delay in the prescribed time Tf, which will be clear
in the proof of Lemma 5. The nonzero constant r,ω in (61a)
are free design parameters. Some guidelines about choosing
the free design parameters r,ω,Tf from the practical point of
view is given in Remark 2.

Remark 2 (Selections of free r,ω,Tf in practice): The con-
stant r can be chosen small enough in practice to reduce the
effect of the excitation (61a) on the control performance. The
frequency ω in (61a) should be selected away from the natural
inherent frequency of the plant to avoid the appearance of
syntony. The prescribed identification time Tf, together with
the maximum dwell time T , are positively related to the
amount of the measurement data used in parameter estimation.
The larger Tf,T would improve the robustness to the sensor
measurement error but prolong the time till exact parameter
identification. On the contrary, the smaller Tf,T contributes
to the fast identification of the unknown delay, however, the
robustness to the measurement error may be reduced. How to
improve the robustness to the sensor measurement error under
a short prescribed identification time Tf,T is our future work.

Proposition 1 (Existence of solution in an interval):
For every (z[ti],w[ti],v[ti])T ∈ L2((0,1);R3), X(ti) ∈ Rm,
there exists a unique (weak) solution ((z,w,v)T ,X) ∈
C0([ti, ti+1];L2(0,1);R3) × C0([ti, ti+1];Rm) to the system
(1)–(4), (9)–(12), (61).

Proof: The proof is shown in Appendix C.

V. MAIN RESULT

Before presenting the main theorem, we propose the follow-
ing technical lemmas, where when we say that v(x, t) is equal
to zero for x ∈ [0,1], t ∈ [µi+1, ti+1], or not identically zero on
the same domain, we mean except possibly for finitely many
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discontinuities of the functions v(x, t). These discontinuities
are isolated curves in the rectangle [0,1]× [µi+1, ti+1].

Lemma 1 (Gn(µi+1, ti+1) = 0): The sufficient and necessary
condition of Gn(µi+1, ti+1) = 0 for all n ∈ N is v[t] = 0 on
t ∈ [µi+1, ti+1].

Proof: Necessity: If Gn(µi+1, ti+1) = 0 for all n ∈N, then
the definition (59) in conjunction with continuity of gn(t) for
t ∈ [µi+1, ti+1] (because of the definition (54) and the fact that
v ∈C0([ti, ti+1];L2(0,1)) in Proposition 1) implies

gn(t) = 0, t ∈ [µi+1, ti+1]. (62)

According to the definition (54), the equation (62) implies∫ 1

0
sin(xπn)v(x, t)dx = 0, t ∈ [µi+1, ti+1] (63)

for all n ∈ N. Since the set {
√

2sin(xπn) : n = 1,2, . . .} is
an orthonormal basis of L2(0,1), we have v[t] = 0 for t ∈
[µi+1, ti+1].

Sufficiency: If v[t] = 0 on t ∈ [µi+1, ti+1], then
Gn(µi+1, ti+1) = 0 for all n ∈ N is obtained directly by
recalling (59) and (54).

Lemma 2 (The identifier properties at ti+1): For the adap-
tive estimates defined by (60), the following statements hold:
• If v[t] is not identically zero for t ∈ [µi+1, ti+1], then

D̂(ti+1) = D.
• If v[t] is identically zero for t ∈ [µi+1, ti+1], then D̂(ti+1) =

D̂(ti).
Proof: Define a set

Si =

{
D≤ `≤ D : Hn(µi+1, ti+1) = Gn(µi+1, ti+1)`,

n = 1,2, · · ·
}
. (64)

From (57), we know that D ∈ Si. If Si is a singleton, it is
nothing else but the generated adaptive estimate D̂(ti+1) by
(60), which is equal to the true delay D.

1) If v[t] is not identically zero for t ∈ [µi+1, ti+1], recalling
Lemma 1, there exists n∈N such that Gn(µi+1, ti+1) 6= 0.
Now defining the index set I as the set of all n∈N with
Gn(µi+1, ti+1) 6= 0, then (64) implies that

Si =

{
`=

Hn(µi+1, ti+1)

Gn(µi+1, ti+1)
,n ∈ I

}
is a singleton, and therefore from (60) we get D̂(ti+1) =
D.

2) If v[t] is identically zero on t ∈ [µi+1, ti+1], according to
(53), (54), (58), (59), one obtains

Gn(µi+1, ti+1) = Hn(µi+1, ti+1) = 0, n ∈ N,

and it follows that Si = {D ≤ ` ≤ D}. Then, from (60)
one arrive at D̂(ti+1) = D̂(ti).

The proof is complete.
Lemma 3 (The identifier properties for t ∈ [ti, limk→∞(tk))):

If D̂(ti) = D for certain i ∈ Z+, then D̂(t) = D for all
t ∈ [ti, limk→∞(tk)).

Proof: According to Lemma 2, we have that D̂(ti+1)
is equal to either D or D̂(ti). Therefore, if D̂(ti) = D, then

D̂(ti+1) = D. Repeating this process, we then have D̂(t) = D
for all t ∈ [ti, limk→∞(tk)). The proof is complete.

Lemma 4 (Existence of a minimum dwell-time): There ex-
ists a positive constant τd such that ti+1−ti ≥ τd for all i∈Z+.

Proof: The result is established by discussing the follow-
ing two cases:
• Case 1: The exact identification has not been achieved

for t ∈ [0, ti]. According to Lemmas 2 and 3, we know
D̂(t) ≡ D̂(0) on t ∈ [0, ti+1). Recalling Proposition 1,
we obtain that Ω(t) is continuous on t ∈ [ti, ti+1), with
possible finite non-differentiable points (though it is dif-
ferentiable from the left and from the right, i.e. the left
and right derivatives are finite, at those points). Denoting
the maximum rate of change of Ω(t) on t ∈ (ti, ti+1) as Vi,
that is, Vi = max{maxt∈(ti,ti+1)/Ii |Ω̇(t)|,Ai} where Ii is the
set of those possible finite non-differentiable points, and
where the set Ai is the absolute values of left and right
derivatives at the points in Ii. Recalling the triggering
mechanism (48), the lower bound τ i of the dwell time is
given by

τ i =

min
{

((1+a)ϒ̂(D̂(0))−1)Ω(ti)
Vi

,T
}
> 0, if Ω(ti) 6= 0

T, if Ω(ti) = 0.
(65)

• Case 2: The exact identification has been achieved for
[0, ti]. In this case, we have ti+1 − ti = T . We prove
this as follows. Once the exact delay identification is
achieved, the delay-adaptive control input is identical to
the nominal delay-compensated control input in Section
III. When Ω(ti) 6= 0, we have that Ω(t) ≤ ϒΩ(ti) for
ti ≤ t ≤ ti+1 according to Theorem 1. It follows from
ϒ̂(D̂(ti)) = ϒ̂(D) = ϒ that Ω(t) < (1 + a)ϒ̂(D̂(ti))Ω(ti)
for ti ≤ t ≤ ti+1. Thus ti+1 − ti = T according to (48).
When Ω(ti) = 0, we straightforwardly have ti+1− ti = T
according to the second equation in (48) and therefore,
ti+1− ti = T .

The lemma is thus obtained.
Corollary 1 (Well-posedness of the closed-loop system):

No Zeno phenomenon occurs, i.e., limi→∞ ti = +∞, and
the closed-loop system is well-posed in the sense that
for every (z[0],w[0])T ∈ L2((0,1);R2), X(0) ∈ Rm, and
D̂(0) ∈ [D,D], there exists a unique (weak) solution
((z,w,v)T ,X) ∈ C0(R+;L2(0,1);R3) × C0(R+;Rm), and
D̂(t) ∈ {` ∈ R : D ≤ ` ≤ D} for t ∈ [0,∞), to the system
consisting of (1)–(4), (9)–(12), (60), and (61).

Proof: Recalling Lemma 4, we have that

ti ≥ τd i, i ∈ Z+,

where τd > 0, that is,

lim
i→∞

(ti) = +∞, (66)

which implies a solution defined on R+ in the subsequent
analysis.

From the initial data (z[0],w[0])T ∈ L2((0,1);R2),
X(0) ∈ Rm and (12), recalling the result in
Proposition 1 for i = 0, it follows that ((z,w,v)T ,X) ∈
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C0([t0, t1];L2(0,1);R3) × C0([t0, t1];Rm), which implies
(z[t1],w[t1],v[t1])T ∈ L2((0,1);R3), X(t1) ∈ Rm. Recalling
the result in Proposition 1 for i = 1, together
with the solution obtained for [t0, t1], we have that
((z,w,v)T ,X) ∈ C0([t0, t2];L2(0,1);R3) × C0([t0, t2];Rm).
Repeating the above steps, we obtain that
((z,w,v)T ,X) ∈ C0([t0, ti];L2(0,1);R3) × C0([t0, ti];Rm)
for i ∈ N. Applying (66), we thus have ((z,w,v)T ,X) ∈
C0([R+;L2(0,1);R3) × C0(R+;Rm). It is straightforwardly
obtained from (60) that D̂(t) ∈ [D,D] if D̂(0) ∈ [D,D].

Corollary 1 is thus obtained.
Lemma 5 (Finite-time convergence of the update law):

The estimate D̂ converges to the true value no latter than Tf,
i.e.,

D̂(t) = D, ∀t ∈ [t f ,∞) (67)

where 0 < t f ≤ Tf.
Proof: According to (61), we conclude that the control

input Ud(t) is not identically zero on t ∈ [0, tz+1) where the
time instant ti satisfying the condition in (61a) is denoted as
tz. There exists a time instant t f ≤ tz+1 ( f > 0) such that
Ud(t) is not identically zero on t ∈ [µ f , t f ]. Recalling (10),
(11) where U(t) has been replaced by Ud(t), we conclude that
the actuator state v[t] is not identically zero on t ∈ [µ f , t f ].
Recalling Lemma 2, Lemma 3, and Corollary 1, we thus obtain
(67). According to (61a), (48), we have

tz < tz+1 ≤ Tf. (68)

Recalling t f ≤ tz+1, this lemma is obtained.
Now, we are in a position to state our main result in the
following theorem, i.e., exponential regulation of the plant and
actuator states.

Theorem 2: For all initial data (z[0],w[0])T ∈ L2(0,1),
X(0) ∈Rm, D̂(0) ∈ [D,D], considering the closed-loop system
consisting of the plant (1)–(4), (9)–(12), the controller (61),
the triggering mechanism (48), and the least-squares identifier
(60), the exponential regulation of the closed-loop system is
obtained in the sense that there exist positive constants M,λ1
such that

Ω(t)≤Me−λ1t , t ≥ 0, (69)

where Ω(t) is defined in (35).
Proof: Case 1: (61a) is not executed. Then the delay-

adaptive control law Ud is (61b) all the time. Replacing the
nominal control law U by Ud defined by (61b) in (11), through
the transformations in Section III, the right boundary condition
of the actuator PDE (30) in the target system (17)–(20), (28)–
(30) becomes

û(0, t) = ξ (t), (70)

where

ξ (t) =Ud(t; D̂)−U(t;D)

=
∫ 1

0
(M1(y; D̂)−M1(y;D))z(y, t)dy

+
∫ 1

0
(M2(y; D̂)−M2(y;D))w(y, t)dy

+
∫ 1

0
(M3(y; D̂)−M3(y;D))v(y, t)dy

+(M4(D̂)−M4(D))X(t). (71)

Taking the derivative of (36) along the target system states
corresponding to the even-based closed-loop system consisting
of (17)–(20), (28), (29), and (70), through a similar process
in (44), recalling conditions (37)–(40) on δ , ra, rc, and rd
(we emphasize that conditions (37)–(40) only depend on the
known plant parameters and the known bounds of the unknown
parameters in Assumption 3), we obtain

V̇ (t)≤−λ1V (t)+
rc

2D
ξ (t)2, t ≥ 0, (72)

where λ1 is given in (46). According to (67) and (71), one
can establish that

ξ (t)≡ 0, t ∈ [t f ,∞). (73)

We then have that

V̇ (t)≤−λ1V (t), t ≥ t f . (74)

Multiplying both sides of (74) by eλ1t and integrating the
resulting terms from t f to t lead to the following inequality

V (t)≤V (t f )e−λ1(t−t f ), t ≥ t f ,

which, by virtue of (41), is equivalent to

Ω(t)≤ ϒΩ(t f )e−λ1(t−t f ), t ≥ t f , (75)

where Ω is defined in (35) and the positive constant ϒ is given
in (47).

Note that the norm estimate (75) is only true for t ≥ t f .
Next, we extend our analysis for t ∈ [0, t f ]. With the help of
(41), (71), we obtain from (72) that

V̇ (t)≤−λ1V (t)+Q(D̂(0))V (t), t ∈ [0, t f ), (76)

where the positive constant Q(D̂(0)) is

Q(D̂(0)) = max
y∈[0,1]

{
(K1(0,y; D̂(0))−K1(0,y;D))2,

(K2(0,y; D̂(0))−K2(0,y;D))2,(R(0,y; D̂(0))−R(0,y;D))2,

(η(0; D̂(0))−η(0;D))2
}

2rc

Dξ1ξ3
(77)

which is derived by finding an upper bound for ξ (t)2 (71) in
the form of target states β ,α, û,X , and recalling (41).

Hence, the following holds

Ω(t)≤ ϒΩ(0)eλ2(D̂(0))t , t ∈ [0, t f ], (78)

where
λ2(D̂(0)) = |Q(D̂(0))−λ1|> 0,

and the positive constant ϒ is given in (47). Therefore, it
straightforwardly follows that

Ω(t f )≤ ϒeλ2(D̂(0))t f Ω(0). (79)

Considering (78), combining (75) and (79) yields

Ω(t)≤ ϒ
2e(λ2(D̂(0))+λ1)t f Ω(0)e−λ1t , t ≥ 0, (80)
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which is equivalent to (69) with

M = ϒ
2e(λ2(D̂(0))+λ1)t f Ω(0).

Case 2: (61a) is executed. Denoting the time instant ti
satisfying the condition in (61a) as tz, we know from (61)
that

Ud =


0, t ∈ [0, tz) (81a)

r
(

sin(ω(t− ti +
π

2ω
))−1

)
, t ∈ [tz, tz+1) (81b)

U(t;D), t ∈ [tz+1,∞) (81c)

and t f = tz+1 in Lemma 5, recalling Lemmas 2 and 3 as well
as (10), (11) where U(t) has been replaced by Ud(t).

Therefore, following (73)–(75), applying (81c) that implies
that ξ in (71) is identically zero on t ≥ tz+1, we have

Ω(t)≤ ϒΩ(tz+1)e−λ1(t−tz+1), t ≥ tz+1. (82)

Following (76)–(79), recalling (81a), we have

Ω(t)≤ ϒΩ(0)eλ3t , t ∈ [0, tz], (83)

for t ∈ [0, tz), where λ3 = Q1− λ1 and the positive constant
Q1 is the one in (77) removing K1(0,y; D̂(0)), K2(0,y; D̂(0)),
R(0,y; D̂(0)), η(0; D̂(0)). This implies

Ω(tz)≤ ϒΩ(0)e|λ3|tz . (84)

Similarly, we obtain from (81b) that

Ω(t)≤ ϒΩ(tz)eλ4(t−tz)+
4rcr2(eλ4(t−tz)−1)

λ4Dξ1ξ3
, t ∈ [tz, tz+1],

where λ4 = 2Q1−λ1. Applying (68) and (84), we have

Ω(tz+1)≤ ϒ
2
Ω(0)e|λ3|Tf+|λ4|T +

4rcr2(e|λ4|T −1)
|λ4|Dξ1ξ3

. (85)

Inserting (85) into (82), one obtains (69) where

M = ϒ
3
Ω(0)e|λ3|Tf+|λ4|T+λ1Tf +

4ϒrc(e|λ4|T −1)eλ1Tf

|λ4|Dξ1ξ3
r2. (86)

The proof of the theorem is complete.

VI. SIMULATION

A deep-sea construction vessel (DCV) is used to place
equipment to be installed at the predetermined location on
the seafloor, which is shown in Figure 2. Different from [57]
that deals with a known sensor delay that exists in the large-
distance transmission of the sensing signal from the seafloor
to the vessel on the ocean surface through a set of acoustics
devices, we consider all possible delays here (including the
transmission of the sensing signal, computation of the control
law, and the delay in the hydraulic actuator for the ship-
mounted crane and so on) as an unknown delay in the control
input channel. By designing a control input at the top of the
crane cable, our goal is to reduce the oscillations of the crane
cable with the purpose of placing the payload attached at the
bottom of the cable in the target area, despite the presence of
the unknown delay.

Fig. 2: Deep-sea construction vessel.

A. Model

The following dynamic model of cable-payload lateral os-
cillations in DCV is taken from [57],

T0ux̄(0, t) =U(t−D), (87)
ρutt(x̄, t) = T0ux̄x̄(x̄, t)−dcut(x̄, t), (88)

u(L, t) = bL(t), (89)

MLb̈L(t) =−dLḃL(t)+T0ux̄(L, t), (90)

∀(x̄, t) ∈ [0,L]× [0,∞). The state u(x̄, t) describes the lateral
oscillation displacement along the cable, and bL(t) denotes
that of the payload. The control input U is subject to the
unknown time delay D mentioned above. The static tension T0
is defined as T0 = MLg−Fbuoyant, where the buoyancy Fbuoyant
is Fbuoyant =

1
4 πD2

chcρsg. The physical parameters of the deep-
sea construction vessel are shown in Table I.

Like [57], after applying the Riemann transformations

z(x̄, t) = ut(x̄, t)−

√
T0

ρ
ux̄(x̄, t), (91)

w(x̄, t) = ut(x̄, t)+

√
T0

ρ
ux̄(x̄, t), (92)

introducing a space normalization variable

x =
x̄
L
∈ [0,1], (93)

and defining X(t) = ḃL(t), equations (87)–(90) are rewritten
as the considered plant (1)–(5) with the coefficients

c0 = 2

√
1

T0ρ
, q1 = q2 =

1
L

√
T0

ρ
, (94)

d1 = d2 = d3 = d4 =
−dc

2ρ
,q =−1, p = 1, (95)
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TABLE I: Physical parameters of the DCV.

Parameters (units) values
Cable length L (m) 1500
Cable linear density ρ (kg/m) 7.5
Payload mass ML (kg) 3.5× 105

Gravitational acceleration g (m/s2) 9.8
Cable material damping coefficient dc (N·s/m) 0.8
Height of payload modeled as a cylinder hc (m) 7.5
Diameter of payload modeled as a cylinder Dc (m) 5
Damping coefficient at payload dL (N·s/m) 1.2×105

Seawater density ρs (kgm−3) 1024

C = 2, A =
−dL

ML
+

√
T0ρ

ML
, B =−

√
T0ρ

ML
, (96)

which is the simulation model in this section, where it can
be checked that the plan parameters in (94)–(96) satisfy
Assumptions 1, 2 by recalling Table I.

The initial conditions are defined as

z(x,0) = 8sin(5πx(1− x)), w(x,0) =−8cos(5πx),

thereby, X(0) = 1.13, recalling (4), which physically corre-
sponds to the initial oscillation velocities of the payload. The
unknown delay D is set as 1, and the known bounds D and
D are assumed as 0.01 and 2. We will show the simulation
results of the following four cases:
• Open loop: the control input is zero;
• Nonadaptive control: the nominal delay-compensated

control with the unknown delay D replaced by its estimate
0.25;

• Delay-adaptive control with the initial delay estimate
D̂(0) = 0.25, where the design parameter K in (22) is
chosen as K =−18;

• Delay-adaptive control with the initial delay estimate
D̂(0) = 1.5, where the design parameter K in (22) is
chosen as K =−13.

Other design parameters are

δ =−0.36, ra = 1.02, rc = 1,rd = 0.02, a = 2,

T = 3.12, Ñ = 10,T = 8,r = 0.5,ω = 1

according to (37)–(40), where a,T, Ñ,T are free but positive,
and r,ω are free. Actually, like most physical systems, (61a)
associated with r,ω has not been activated in the simulation
because the control signal is not identically zero for a certain
time period from the beginning. The parameter n̄ mentioned
in Remark 1 is set as n̄ = 2.

Remark 3: In addition to Remark 1 about the implemen-
tation of the delay identifier, some more things are worth
noting in the simulation. 1) Approximating the integration with
respect to the space variable in the identifier as the summation
operator will cause a tiny error between the final parameter
estimate and the true value in the simulation result, which
will be seen in Fig. 4. The smaller space step adopted in the
simulation will make the error smaller. 2) The error of approx-
imation in the simulation will also lead to tiny differences
between the outputs of the identifer at each updating time
even if the effective parameter deification has been achieved.
Therefore, we set a small margin to tolerate the approximation
error, that is–if the difference between the estimates from the

identifier at two adjacent updating times is smaller than 2%
of the true value, we consider that this difference is caused by
the approximation error in the simulation, and thus keep the
estimate value as same as the one at the former updating time.

B. Simulation result
The numerical computation is conducted using the finite

difference method with the step sizes of t and x as 0.001,
and 0.02, respectively. The approximate solutions of the kernel
PDEs used in the control law, which is defined by (61), (48),
(60) where the integral operators are approximated by sums,
are also solved by the finite difference method based on the
discretization of the triangular domain into a uniformly spaced
grid with the interval of 0.02.

The designed delay-adaptive control input and the estimate
of the unknown delay are shown in Figures 3 and 4, re-
spectively, from which we know that the identification of the
unknown delay is achieved at the first triggering time, no
matter the initial delay estimate is less than (D̂(0) = 0.25) or
larger than (D̂(0) = 1.5) the true value D = 1. As mentioned
in Remark 3, the tiny differences between the delay estimate
and its true values come from the error of approximation—
that is, approximating the integration with respect to the space
variable from 0 to 1 in the identifier as the summation operator
for the 51 spatial discrete points with the fixed interval of
0.02. The time evolution of the ODE state X(t) is shown in
Figure 5, where the brown dashed line, the red dashed line,
the black solid line, and the blue dot-dash line show the results
of the four cases mentioned in Section VI-A, respectively.
Although both the nonadaptive delay-compensated controller
and the delay-adaptive controllers can attenuate the state of the
ODE in comparison to the open loop scenario, Figure 5 further
reveals the “delay mismatch” in the non-adaptive control law
leads to slower convergence after the time point when the
exact delay estimate is obtained and the updated input signal
reaches the ODE through the transport PDEs. Even though
the simulation model, like many practical models that usually
include damping, is not an open-loop unstable plant, the pro-
posed control design still shows improved convergence rates
under the proposed delay-adaptive controllers as compared to
both the open-loop case and nonadaptive delay-compensated
controller. Similarly, it is shown in Figures 6, 7, and 8 that the
PDE plant states z(x, t), w(x, t) and the actuator state v(x, t) all
converge to zero when the system is subject to the proposed
delay-adaptive control inputs with D̂(0) = 0.25 or D̂(0) = 1.5.

It is easy to obtain the oscillation energy of the cable
in DCV ρ

2 ‖ut(·, t)‖2 + T0
2 ‖ux(·, t)‖2 = ρ

8 ‖w(·, t) + z(·, t)‖2 +
ρ

8 ‖w(·, t)− z(·, t)‖2 by recalling (91)–(93). Therefore, it is
known from the results z(x, t) and w(x, t) in Figures 6 and 7
that the oscillation energy of the cable decreases to zero fast
under the proposed delay-adaptive controller. One can also
observe from Figure 5 that the regulation performance of the
ODE, i.e., the payload, is satisfied.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a delay-adaptive control
scheme for a 2× 2 hyperbolic PDE-ODE system, where the
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Fig. 3: The delay-adaptive control input Ud(t) with D̂(0) =
0.25 or D̂(0) = 1.5 and the nonadaptive control input U0(t).

Fig. 4: Estimate of the unknown delay D under the initial
estimate D̂(0) = 0.25 or D̂(0) = 1.5.

Fig. 5: The evolution of X(t) under the delay-adaptive control
Ud(t) with D̂(0) = 0.25 or D̂(0) = 1.5 and the nonadaptive
control U0(t).

(a) D̂(0) = 0.25 (b) D̂(0) = 1.5

Fig. 6: The evolution of the plant state z(x, t) under the delay-
adaptive control Ud(t) with D̂(0) = 0.25 or D̂(0) = 1.5.

(a) D̂(0) = 0.25 (b) D̂(0) = 1.5

Fig. 7: The evolution of the plant state w(x, t) under the delay-
adaptive control Ud(t) with D̂(0) = 0.25 or D̂(0) = 1.5.

(a) D̂(0) = 0.25 (b) D̂(0) = 1.5

Fig. 8: The evolution of the actuator state v(x, t) under the
delay-adaptive control Ud(t) with D̂(0) = 0.25 or D̂(0) = 1.5.

input delay is arbitrarily large and unknown. The controller
consists of a nominal delay-compensated control law, a batch
least-squares identifier for the unknown delay, and a triggering
mechanism to determine the update times of the identifier.
We have proved that the proposed control guarantees: 1) the
avoidance of Zeno phenomenon; 2) the identification of the
unknown boundary input delay before the prescribed time; 3)
the exponential regulation of both the plant and the actuator
states to zero. The effectiveness of the proposed design is
verified by numerical simulation in the control application
of a deep-sea construction vessel subject to input delay. This
paper only deals with the state-feedback adaptive-delay control
design for coupled hyperbolic PDEs whose actuator states and
plant states are measurable.

In our future work, the output-feedback control design with
unmeasurable actuator and plant states, and improvement of
the robustness to the sensor measurement error under a short
expected identification time, will be considered.

VIII. APPENDIX

A. Gain kernels PDEs and their associated boundary condi-
tions

(a) First-step transformation
The backstepping transformation (13) and (14) lead to

the following PDE-ODE system of kernel conditions for
ϕ,φ ,Ψ,Φ,γ and λ . These conditions are derived by mapping
the original plant to the first intermediate system.

q2ϕy(x,y)−q1ϕx(x,y)− (d4−d1)ϕ(x,y)

−d2φ(x,y) = 0, (A.1)
q1φx(x,y)+q1φy(x,y)+d3ϕ(x,y) = 0, (A.2)
q2Ψx(x,y)−q1Ψy(x,y)+(d4−d1)Ψ(x,y)

−d3Φ(x,y) = 0, (A.3)
q2Φx(x,y)+q2Φy(x,y)−d2Ψ(x,y) = 0, (A.4)
q1γ
′(x)+ γ(x)(A−d1In)+q1Cφ(x,0) = 0, (A.5)
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q2λ
′(x)−λ (x)(A−d4In)−q1CΨ(x,0) = 0, (A.6)

with the boundary conditions

ϕ(x,x) =
d2

q1 +q2
, (A.7)

q2ϕ(x,0)+q1 pφ(x,0) = γ(x)B, (A.8)

Ψ(x,x) =
−d3

q1 +q2
, (A.9)

q2Φ(x,0)+q1 pΨ(x,0) = λ (x)B, (A.10)

λ (0) = KT , (A.11)

γ(0) =C− pKT , (A.12)

where In is an identity matrix with dimension n.
Similarly, the boundary conditions of the gain kernels

associated with the inverse backstepping transformation (15),
(16), namely, ϕ̄, φ̄ , γ̄,Ψ̄,Φ̄ and λ̄ are given by

q2Ψ̄x(x,y)−q1Ψ̄y(x,y)+(d4−d1)Ψ̄(x,y)

+d3φ̄(x,y) = 0, (A.13)
q1φ̄x(x,y)+q1φ̄y(x,y)−d2Ψ̄(x,y) = 0, (A.14)
q2ϕ̄y(x,y)−q1ϕ̄x(x,y)− (d4−d1)ϕ̄(x,y)

+d2Φ̄(x,y) = 0, (A.15)
q2Φ̄y(x,y)+q2Φ̄x(x,y)+d3ϕ̄(x,y) = 0, (A.16)

q1γ̄
′(x)− γ̄(x)(A+BKT +d1In)−d2λ̄ (x) = 0, (A.17)

q2λ̄
′(x)+ λ̄ (x)(A+BKT +d4In)+d3γ̄(x) = 0, (A.18)

with the boundary conditions

Ψ̄(x,x) =− d3

q1 +q2
, (A.19)

q1 pφ̄(x,0)+q2ϕ̄(x,0) = γ̄(x)B, (A.20)

ϕ̄(x,x) =
d2

q1 +q2
, (A.21)

q2Φ̄(x,0)+q1 pΨ̄(x,0) = λ̄ (x)B, (A.22)

λ̄ (0) =−KT , (A.23)

γ̄(0) = pKT −C. (A.24)

The set of equations (A.1)–(A.12) and (A.13)–(A.24) are
well-known for coupled linear heterodirectional hyperbolic
PDE-ODE systems, and their well-posedness has been proved
in Theorem 4.1 of [43].

(b) Second-step transformation
The gain kernels K1,K2 and η are defined below:

dK1x(x,y)+q1K1y(x,y) =−d1K1(x,y), (A.25)
dK2x(x,y)−q2K2y(x,y) =−d4K2(x,y), (A.26)

dη
′(x)A−1

m +η(x) = 0, (A.27)

with the boundary conditions

K1(1,y) =
1
c0

Ψ̄(1,y)− 1
c0

qφ̄(1,y), (A.28)

K2(1,y) =
1
c0

Φ̄(1,y)− 1
c0

qϕ̄(1,y), (A.29)

K1(x,1) =
qq2

q1
K2(x,1), (A.30)

q1 pK1(x,0)+q2K2(x,0) = η(x)B, (A.31)

η(1) =− 1
c0

qγ̄(1)+
1
c0

λ̄ (1). (A.32)

The proof of well-posedness of (A.25)–(A.32) is given in Lem-
ma 2 in [7]. To derive conditions (A.25)–(A.32), one needs to
consider (21) and (23). Hence, (24) holds straightforwardly
under the conditions (A.28), (A.29), (A.32). Taking the time
and spatial derivatives of (23), inserting the results into (25),
recalling (17)–(20), (24), one obtains

ut(x, t)+dux(x, t)−q2K2(x,1)c0u(1, t)

=vt(x, t)+
∫ 1

0
K1(x,y)αt(y, t)dy+

∫ 1

0
K2(x,y)βt(y, t)dy

+dvx(x, t)+d
∫ 1

0
K1x(x,y)α(y, t)dy

+d
∫ 1

0
K2x(x,y)β (y, t)dy

+η(x)Ẋ(t)+dη
′(x)X(t)−q2K2(x,1)c0u(1, t)

=vt(x, t)−q1

∫ 1

0
K1(x,y)αx(y, t)dy

+d1

∫ 1

0
K1(x,y)α(y, t)dy

+q2

∫ 1

0
K2(x,y)βx(y, t)dy+d4

∫ 1

0
K2(x,y)β (y, t)dy

+dvx(x, t)+d
∫ 1

0
K1x(x,y)α(y, t)dy

+d
∫ 1

0
K2x(x,y)β (y, t)dy+η(x)(AmX(t)+Bβ (0, t))

+dη
′(x)X(t)−q2K2(x,1)c0u(1, t)

=(q2K2(x,1)q−q1K1(x,1))α(1, t)

+
∫ x

0
(q1K1y(x,y)+d1K1(x,y)+dK1x(x,y))α(y, t)dy

− (q2K2(x,0)+q1K1(x,0)p−η(x)B)β (0, t)

+
∫ x

0
(d4K2(x,y)−q2K2y(x,y)+dK2x(x,y))β (y, t)dy

+
(
η(x)Am +dη

′(x)
)

X(t) = 0. (A.33)

The necessary and sufficient conditions for (A.33) to hold are
given as (A.25)–(A.27), (A.30), (A.31).

(c) Third-step transformation
The derivation of the gain kernels PDE R and RI is per-

formed as follows. Substituting the time and spatial derivatives
of (27) into (25) and recalling (28)–(30), we have

ut(x, t)+dux(x, t)−q2K2(x,1)c0u(1, t)

=ût(x, t)+
∫ 1

x
R(x,y)ût(y, t)dy+dûx(x, t)

+d
∫ 1

x
Rx(x,y)û(y, t)dy−dR(x,x)û(x, t)

−q2K2(x,1)c0û(1, t)

=−d
∫ 1

x
R(x,y)ûx(y, t)dy+d

∫ 1

x
Rx(x,y)û(y, t)dy

−dR(x,x)û(x, t)−q2K2(x,1)c0û(1, t)
=− (dR(x,1)+q2K2(x,1)c0)û(1, t)

+d
∫ 1

x
(Rx(x,y)+Ry(x,y))û(y, t)dy = 0. (A.34)
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For (A.34) to hold, the following equality must be satisfied:

Rx(x,y)+Ry(x,y) = 0, (A.35)
dR(x,1) =−q2c0K2(x,1), (A.36)

which obviously admits a unique solution

R(x,y) =−q2c0

d
K2(x− y+1,1).

Similarly, substituting the time and spatial derivatives of
(32) into (29) and recalling (25), we have

ût(x, t)+dûx(x, t)

=ut(x, t)+
∫ 1

x
P(x,y)ut(y, t)dy+dux(x, t)

+d
∫ 1

x
Px(x,y)u(y, t)dy−dP(x,x)u(x, t)

=q2K2(x,1)c0u(1, t)−d
∫ 1

x
P(x,y)ux(y, t)dy

+
∫ 1

x
P(x,y)q2K2(y,1)c0dyu(1, t)

+d
∫ 1

x
Px(x,y)u(y, t)dy−dP(x,x)u(x, t)

=
(
q2K2(x,1)c0−dP(x,1)

+
∫ 1

x
P(x,y)q2K2(y,1)c0dy

)
u(1, t)

+d
∫ 1

x
(Py(x,y)+Px(x,y))u(y, t)dy = 0.

The equation above suggests that the kernel function P in the
inverse transformation (32) satisfies the following PDE with
the corresponding boundary value:

Py(x,y)−Px(x,y) = 0, (A.37)

P(x,1) =
q2

d
K2(x,1)c0 +

1
d

∫ 1

x
P(x,y)q2K2(y,1)c0dy, (A.38)

whose well-posedness can be obtained by the method of
characteristics.

B. Expressions of the controller gain functions M1, M2, M3,
M4

The functions M1, M2, M3, and M4 are given as follows,

M1(y) =
∫ 1

0
R(0,s)K1(s,y)ds−K1(0,y)

+
∫ 1

0
R(0,s1)

∫ 1

s1

P(s1,s)K1(s,y)dsds1

−
∫ 1

y

[∫ 1

0
R(0,y)K1(y,s)dy−K1(0,s)

+
∫ 1

0
R(0,s1)

∫ 1

s1

P(s1,y)K1(y,s)dyds1

]
φ(s,y)ds

−
∫ 1

y

[∫ 1

0
R(0,y)K2(y,s)dy−K2(0,s)

+
∫ 1

0
R(0,s1)

∫ 1

s1

P(s1,y)K2(y,s)dyds1

]
Ψ(s,y)ds,

M2(y) =−
∫ 1

y

[∫ 1

0
R(0,y)K1(y,s)dy−K1(0,s)

+
∫ 1

0
R(0,s1)

∫ 1

s1

P(s1,y)K1(y,s)dyds1

]
ϕ(s,y)ds

+
∫ 1

0
R(0,s)K2(s,y)ds−K2(0,y)

+
∫ 1

0
R(0,s1)

∫ 1

s1

P(s1,s)K2(s,y)dsds1

−
∫ 1

y

[∫ 1

0
R(0,y)K2(y,s)dy−K2(0,s)

+
∫ 1

0
R(0,s1)

∫ 1

s1

P(s1,y)K2(y,s)dyds1

]
Φ(s,y)ds,

M3(y) =R(0,y)+
∫ y

0
R(0,s)P(s,y)ds,

M4 =
∫ 1

0
R(0,y)η(y)dy−η(0)

+
∫ 1

0
R(0,y)

∫ 1

y
P(y,s)η(s)dsdy

−
∫ 1

0

[∫ 1

0
R(0,s)K2(s,y)ds−K2(0,y)

+
∫ 1

0
R(0,s1)

∫ 1

s1

P(s1,s)K2(s,y)dsds1

]
λ (y)dy

−
∫ 1

0

[∫ 1

0
R(0,s)K1(s,y)ds−K1(0,y)

+
∫ 1

0
R(0,s1)

∫ 1

s1

P(s1,s)K1(s,y)dsds1

]
γ(y)dy,

where K1,K2,η ,R,P are parameterized by the unknown delay
D = 1

d according to the conditions defined in Appendix A.

C. Proof of Proposition 1

Case 1: With the delay-adaptive control input Ud (61b),
applying the following transformations,

α(x, t) = e
d1
q1

x
ᾱ(x, t) (C.1)

β (x, t) = e−
d4
q2

x
β̄ (x, t) (C.2)

the target system, i.e., equivalently closed-loop system, is
written as

Ẋ(t) =AmX(t)+Bβ̄ (0, t), (C.3)

ᾱ(0, t) =− pβ̄ (0, t), (C.4)
ᾱt(x, t) =−q1ᾱx(x, t), (C.5)

β̄t(x, t) =q2β̄x(x, t), (C.6)

β̄ (1, t) =c0e
d4
q2 û(1, t)+qe

d1
q1

+
d4
q2 ᾱ(1, t), (C.7)

ût(x, t) =−dûx(x, t), (C.8)

û(0, t) =−
∫ 1

0
K1i(y)ᾱ(y, t)dy−

∫ 1

0
K2i(y)β̄ (y, t)dy

+
∫ 1

0
Ri(y)û(y, t)dy−ηiX(t) (C.9)

for t ∈ [ti, ti+1) where K1i(y) = (K1(0,y; D̂(ti)) −
K1(0,y;D))e

d1
q1

y, K2i(y) = (K2(0,y; D̂(ti))−K2(0,y;D))e−
d4
q2

y,
Ri(y) = R(0,y; D̂(ti))−R(0,y;D), ηi = η(0; D̂(ti))−η(0;D)
considering (31).
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Next, we prove the well-posedness of (C.3)–(C.9) by the
method of characteristics following [16]. Considering a con-
stant 0 < T̄i < min{ti+1 − ti, 1

q1
, 1

q2
, 1

d }, by the method of
characteristics, for ς ∈ [0, T̄i] we get

β̄ (x, ti + ς) =


β̄ (x+q2ς , ti), x < 1−q2ς

c0e
d4
q2 û(1−d(ς − 1−x

q2
), ti)

+qe
d1
q1

+
d4
q2 ᾱ(1−q1(ς − 1−x

q2
), ti) x≥ 1−q2ς

(C.10)

ᾱ(x, ti + ς) =

{
ᾱ(x−q1ς , ti), x > q1ς

−pβ̄ (q2(ς − x
q1
), ti) x≤ q1ς

(C.11)

Integrating (C.3) and recalling (C.10), we have

X(ti + ς) = Am

∫ ti+ς

ti
X(τ)dτ +

∫
ς

0
Bβ̄ (q2τ, ti)dτ +X(ti)

(C.12)

for ς ∈ [0, T̄i]. According to (C.8), (C.9), we also obtain by the
method of characteristics that

û(x, ti + ς) = û(x−dς , ti), x > dς (C.13)

and the solution û(x, ti + ς) for x≤ dς is given by

û(x, ti + ς) = û(0, ti + t∗)

=−
∫ 1

0
K1i(y)ᾱ(y, ti + t∗)dy−

∫ 1

0
K2i(y)β̄ (y, ti + t∗)dy

+
∫ 1

0
Ri(y)û(y, ti + t∗)dy−ηiX(ti + t∗)

= s(ti + t∗)+
∫ dt∗

0
Ri(y)û(0, ti + t∗− y

d
)dy, x≤ dς (C.14)

where t∗ = ς − x
d ∈ [0,ς ], and where

s(ti + t∗) =−
∫ 1

0
K1i(y)ᾱ(y, ti + t∗)dy

−
∫ 1

0
K2i(y)β̄ (y, ti + t∗)dy

−ηiX(ti + t∗)+
∫ 1

dt∗
Ri(y)û(y−dt∗, ti)dy. (C.15)

Applying (C.10)–(C.12), one obtains

s(ti + t∗) =
∫ q1t∗

0
K1i(y)(pβ̄ (q2(t∗−

y
q1

), ti))dy

−
∫ 1

q1t∗
K1i(y)ᾱ(y−q1t∗, ti)dy

−
∫ 1−q2t∗

0
K2i(y)β̄ (y+q2t∗, ti)dy

−
∫ 1

1−q2t∗
K2i(y)

(
c0e

d4
q2 û(1−d(t∗− 1− y

q2
), ti)

+qe
d1
q1

+
d4
q2 ᾱ(1−q1(t∗−

1− y
q2

), ti)
)

dy

−ηi

(
Am

∫ ti+t∗

ti
X(τ)dτ +

∫ t∗

0
Bβ̄ (q2τ, ti)dτ +X(ti)

)
+
∫ 1

dt∗
Ri(y)û(y−dt∗, ti)dy. (C.16)

Recalling (ᾱ[ti], β̄ [ti], û[ti])T ∈ L2((0,1);R3), X(ti) ∈ Rm en-
sured by the initial condition (z[ti],w[ti],v[ti])T ∈ L2((0,1);R3),
X(ti)∈Rm and the transformations (13), (14), (23), (32), (C.1),
(C.2), it is obtained from (C.16) that s(ti + t∗) is well-defined.

Defining ρ = t∗− y
d , we obtain from (C.14) that

û(0, ti + t∗) = s(ti + t∗)+d
∫ t∗

0
Ri(d(t∗−ρ))û(0, ti +ρ)dρ,

(C.17)

for t∗ ∈ [0,ς ]. Since s(ti + t∗) and Ri(d(t∗−ρ)) are well de-
fined for t∗ ∈ [0,ς ], where ς ∈ [0, T̄i], and in addition Ri(d(t∗−
ρ)) is also continuous in the interval, then (C.17) is a linear
Volterra integral equation with a unique solution (see Theorem
5 in [29]). Recalling (C.10)–(C.14) and (ᾱ[ti], β̄ [ti], û[ti])T ∈
L2((0,1);R3), X(ti) ∈ Rm, we obtain the well-posedness re-
sult in the sense of ((ᾱ, β̄ , û)T ,X) ∈C0([ti, T̄i];L2(0,1);R3)×
C0([ti, T̄i];Rm). Then starting from (ᾱ[T̄i], β̄ [T̄i], û[T̄i])

T ∈
L2((0,1);R3), X(T̄i) ∈ Rm, repeating the above process step
by step, we obtain ((ᾱ, β̄ , û)T ,X)∈C0([ti, ti+1];L2(0,1);R3)×
C0([ti, ti+1];Rm). Recalling the transformations (15), (16), (23),
(27), (C.1), (C.2), Proposition 1 is thus obtained.

Case 2: With the delay-adaptive control input Ud (61a), the
only difference from Case 1 is that the left boundary condition
of û becomes

û(0, t) =−
∫ 1

0
K1z(y)ᾱ(y, t)dy−

∫ 1

0
K2z(y)β̄ (y, t)dy

+
∫ 1

0
Rz(y)û(y, t)dy−ηzX(t)+ r

(
sin
(

ω

(
t− tz +

π

2ω

))
−1
)
,

for t ∈ [tz, tz+1), where K1z(y) = −K1(0,y;D)e
d1
q1

y, K2z(y) =

−K2(0,y;D)e−
d4
q2

y, Rz(y) = −R(0,y;D), ηz = −η(0;D). This
difference introduces an additional term r(sin(ω(t∗+ π

2ω
))−

1), which is well-defined, into s(tz + t∗) in (C.16) (replacing
K , R, η by K, R, η). Therefore, s(tz+t∗) is still well-defined,
and thus well-posedness result in Case 1 still holds.

D. Norms equivalence between the original and the target
systems’ states

From (13)–(16), (27), (32), we get

‖α(·, t)‖2 ≤η1

(
‖z(·, t)‖2 +‖w(·, t)‖2 + |X(t)|2

)
, (D.1)

‖β (·, t)‖2 ≤η2

(
‖z(·, t)‖2 +‖w(·, t)‖2 + |X(t)|2

)
, (D.2)

‖z(·, t)‖2 ≤η3

(
‖α(·, t)‖2 +‖β (·, t)‖2 + |X(t)|2

)
, (D.3)

‖w(·, t)‖2 ≤η4

(
‖α(·, t)‖2 +‖β (·, t)‖2 + |X(t)|2

)
, (D.4)

‖u(x, t)‖2 ≤η5‖û(x, t)‖2, (D.5)

‖û(x, t)‖2 ≤η6‖u(x, t)‖2, (D.6)

where

η1 =4
(

1+
∫ 1

0

∫ x

0
φ(x,y)2dydx+

∫ 1

0

∫ x

0
ϕ(x,y)2dydx

+
∫ 1

0
γ(x)2dx

)
,
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η2 =4
(

1+
∫ 1

0

∫ x

0
Ψ(x,y)2dydx+

∫ 1

0

∫ x

0
Φ(x,y)2dydx

+
∫ 1

0
λ (x)2dx

)
,

η3 =4
(

1+
∫ 1

0

∫ x

0
φ̄(x,y)2dydx+

∫ 1

0

∫ x

0
ϕ̄(x,y)2dydx

+
∫ 1

0
γ̄(x)2dx

)
,

η4 =4
(

1+
∫ 1

0

∫ x

0
Ψ̄(x,y)2dydx+

∫ 1

0

∫ x

0
Φ̄(x,y)2dydx

+
∫ 1

0
λ̄ (x)2dx

)
,

η5 =2
(

1+
∫ 1

0

∫ 1

x
R(x,y)2dydx

)
,

η6 =2
(

1+
∫ 1

0

∫ 1

x
P(x,y)2dydx

)
.

Recalling (23), together with (D.1), (D.2), (D.5), (D.6), yields

||v(·, t)||2 ≤4
(

η5 +
∫ 1

0

∫ 1

0
K1(x,y)2dydx

+
∫ 1

0

∫ 1

0
K2(x,y)2dydx+

∫ 1

0
η(x)2dx

)(
‖û(·, t)‖2

+ ||α(·, t)||2 + ||β (·, t)||2 + |X(t)|2
)
, (D.7)

||û(·, t)||2 ≤4η6(η1 +η2 +1)
(

1+
∫ 1

0

∫ 1

0
K1(x,y)2dydx

+
∫ 1

0

∫ 1

0
K2(x,y)2dydx+

∫ 1

0
η(x)2dx

)(
||v(·, t)||2

+‖z(·, t)‖2 +‖w(·, t)‖2 + |X(t)|2
)
. (D.8)

Defining

Ω̄(t) = ‖α[t]‖2 +‖β [t]‖2 +‖û[t]‖2 +X(t)2 (D.9)

one obtains

ξ1Ω(t)≤ Ω̄(t)≤ ξ2Ω(t) (D.10)

where

ξ1 =1/
(

1+η3 +η4 +4η5 +4
∫ 1

0

∫ 1

0
K1(x,y)2dydx

+4
∫ 1

0

∫ 1

0
K2(x,y)2dydx+4

∫ 1

0
η(x)2dx

)
, (D.11)

ξ2 =1+η1 +η2

+4η6(η1 +η2 +1)
(

1+
∫ 1

0

∫ 1

0
K1(x,y)2dydx

+
∫ 1

0

∫ 1

0
K2(x,y)2dydx+

∫ 1

0
η(x)2dx

)
. (D.12)
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