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Feedback stabilization for the mass balance
equations of an extrusion process

Mamadou DIAGNE, Peipei SHANG, Zhiqiang WANG

Abstract—In this paper, we study the stabilization problem
for a food extrusion process in the isothermal case. The model
expresses the mass conservation in the extruder chamber and
consists of a hyperbolic Partial Differential Equation (PDE)
and a nonlinear Ordinary Differential Equation (ODE) whose
dynamics describes the evolution of a moving interface. By using
a Lyapunov approach, we obtain the exponential stabilization for
the closed-loop system under natural feedback controls through
indirect measurements. Numerical simulations are also provided
with a comparison between the proposed approach and linear
PI feedback controller.

Index Terms—Feedback stabilization, hyperbolic system, mov-
ing interface, Lyapunov approach.

I. INTRODUCTION

SCREW extruders have become very popular for their abil-
ity to manufacture food and plastics products with desired

shapes and properties. Due to the strong interaction between
the mass, the energy and the momentum balances occurring in
those processes, the design of efficient controllers still remains
a hard task at the industrial level. So far, the control oriented
model of extruders are issued from some black box model of
limited operational validity. Following the objectives of the
control, these models describe the extruder’s temperature and
flow rate at the die output or the pressure dynamics based on
single input and single output or multiple input and multiple
output system. Generally, extrusion processes are controlled
using PID [9], [12], [17] or predictive controllers [6], [19] with
oversimplified or empirical models. In [12], the volumetric
expansion of the extrudate correlated to the die temperature
and pressure and the specific mechanical energy is chosen as
the key product quality to be controlled. The authors study
the performance of the PI controller based on the regulation
of the die pressure using feed rate as a manipulative variable
and show that the response of an improperly tuned controller
may be too sluggish on one hand, or too oscillatory on the
other hand. First-order, second-order and Lead-lag Laplace
transfer-function are exploited in [18] to design a feedforward
controller for a twin-screw food extrusion process to reduce
the effect of feed rate and feed moisture content variations
on the die pressure. [16] uses second-order transfer functions
while emphasizing the difficulty in implementing those types
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of model-based controllers due to the strong influence of
all the manipulated inputs and measurable process variables.
Therefore, very intelligent controllers need to be constructed
for extrusion cooking process based on a control algorithm
developed from process experience. We mention that the
transport delays, the strong interactions and the non-linearities
make it difficult to control such systems with PID controllers.
Predictive controllers might offer better performances but are
somewhat difficult to implement [20].

In the present work, we consider the stabilization of the die
pressure to the desired setpoint in a food extrusion process.
The controller is constructed based on a bi-zone model derived
from the computation of the conservation of mass in the
extruder under the assumption of constant temperature and
viscosity. A Geometric decomposition of the extruder length
in Partially Filled Zone (PFZ) and Fully Filled Zone (FFZ)
allows to describe the process by a transport equation and
a pressure-gradient equation defined on complementary time
varying spatial domains. The domains are coupled by a moving
interface whose dynamics is governed by an ODE representing
the total mass balance in an extruder. We propose suitable
feedback control laws together with practical measurements as
output such that the solution of the closed-loop system con-
verges to a desired steady-state or equilibrium asymptotically.

The stabilization problems for hyperbolic systems has been
widely studied in the literature. The first approach relies on
careful analysis of the classical solutions along the charac-
teristics. We refer to Greenberg and Li [10] in the case of
second-order system of conservation laws and more general
situations on nth-order systems by Li in [15].

Another approach based on Lyapunov techniques was intro-
duced by Coron et al. in [3]. This approach was improved in
[2] where a strict Lyapunov function in terms of Riemann
invariants was constructed and its time derivative can be
made negative definite by choosing properly the boundary
conditions. The Lyapunov function is very useful to analyze
nonlinear hyperbolic systems of conservation laws because of
its robustness, see [1], [2], [4], [5], [21] for a wide range
of applications to various models. Among which, we are
interested in a physical model for the extrusion process which
occurs very often in polymer material and food production.

The main contribution of this paper is to establish the
exponential stabilization for the extrusion model under natural
feedbacks by a Lyapunov function approach motivated by [2],
[4], [21]. The difficulties come from four aspects: 1) The
domains on which the conservation laws are defined depend on
the solution through the dynamical interface; 2) The nonlinear
coupling of the dynamics of the interface and the filling ratio
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in the PFZ is not standard; 3) The measurements and the
feedbacks are natural, however, some of the measurements are
indirect, i.e., the measurements are not a part of solution but
given through a indirect relation of solution; 4) The feedback
controllers are linear and proportional to the measurements,
but highly nonlinear with respect to the state varibles.

The organization of the paper is as follows. In Section
II, we give the physical description of the model. The main
result on stabilization (Theorem 1) and its proof are given
in Section III. Numerical simulations are provided with a
comparison between the proposed approach and linear PI
feedback controller based on the unmeasurable state variable
in Section IV. Finally in Section V, we give our conclusion
and some perspectives in control of the extrusion process.

II. DESCRIPTION OF THE MODEL

An extruder is a process used for manufacturing objects
with fixed shapes and specific properties, see Fig. 1. One
or two Archimedean screws are rotating inside the barrel in
order to convect the extruded material from the feed to the
die exit. In food or polymers extrusion processes, the ultimate
control systems involved manipulation of screw speed, feed
rate, and barrel temperature for the regulation of moisture
content, temperature and viscosity of the finite product, resi-
dence time and die flow. In this paper, we consider the mass

Fig. 1. A single-screw screw extruder

balances model [7], [8] motivated by [13], [14] for cooking
extrusion process. In this case, the material convection along
the extruder chamber of length L is described in two zones:
the PFZ ([0, l(t)] in space) and a FFZ ([l(t), L] in space)
separated by a moving interface l(t). The PFZ and the FFZ
appear due to the die resistance that provokes an accumulation
phenomena and high pressure need to be built-up to evict the
extrudate out of the die. By the mass conservation principle
the convection in the PFZ is described by the evolution of
the filling ratio fp(t, x) for an homogeneous melt. The melt
convection speed in the PFZ, namely, αp depends on the screw
speed N(t) whereas the FFZ transport velocity is related to
the die pressure P (t, L): αp ̸= αf . Under the assumption of
constant viscosity η along the extruder, the dynamics of the
moving interface l(t) is governed by an ODE arising from
the difference of the convection speed in the two regions. The
flow rate in the FFZ is constant and equal to the die flow
rate Fd(t) which is proportional to the pressure difference
∆P (t) := P (t, L) − P0 where P0 denotes the atmospheric
pressure. For more detailed physical description of the model
and definition of all the parameters, one can refer to [7], [8].

In this work, the stabilization of (l(t), fp(t, x)) with the help
of the actuated screw speed N(t) and inlet flow rate Fin(t)

is established based on feedbacks that depend on the pressure
difference ∆P (t) that is a practically useful measurement for
the system. Considering the following change of variables

x 7→ y =
x

l(t)
in PFZ and x 7→ y =

x− l(t)

L− l(t)
in FFZ, (1)

respectively, the time varying domains ([0, l(t)], [l(t), L]) can
be transformed to the fixed domain [0, 1] in space. For the sake
of simplicity, we still denote by x the space variable instead of
y. More precisely, we consider the stabilization problem for
the corresponding normalized system on the spatial domain
[0, 1]. The interface dynamics which arises from a total mass
balance writes{

l̇(t) = F(l(t), N(t), fp(t, 1)), in R+ = (0,∞),

l(0) = l0,
(2)

where

F(l(t), N(t), fp(t, 1)) =

Kd

η ∆P (t)− ρoVeffN(t)fp(t, 1)

ρoSeff (1− fp(t, 1))
,

(3)
Kd , ρ0, η denote the die conductance, the melt density and the
viscosity, respectively. Veff and Seff are the effective volume
and section between a screw element and the extruder barrel,
respectively. Assuming a constant viscosity along the extruder
(the isothermal case), the relation

∆P (t) = P(l(t), N(t)) :=
ηρoVeffN(t)(L− l(t))

Bρo +Kd(L− l(t))
(4)

is determined by integrating the pressure-gradient equation
corresponding to the momentum balance in the FFZ and
considering a pressure continuity coupling relation at the
normalized interface, namely, P (0, t) = P0 in the PFZ [8].
The filling ratio in the PFZ writes

∂tfp(t, x) + αp∂xfp(t, x) = 0, in R+ × (0, 1),

fp(0, x) = f0
p (x), in (0, 1),

fp(t, 0) =
Fin(t)

ρoVeffN(t) , in R+,

(5)

where

αp =
ζN(t)− xF(l(t), N(t), fp(t, 1))

l(t)
. (6)

III. MAIN RESULT AND ITS PROOF

Let us define the constant equilibrium (le, Ne, fpe
) by

F(le, Ne, fpe
) = 0. Thanks to (3) and (4), for any fixed

constants le ∈ (0, L) and Ne > 0, it is equivalent to assign

fpe =
Kd(L− le)

Bρ0 +Kd(L− le)
∈ (0, 1). (7)

Correspondingly, ∆Pe, αpe and Fine are given by ∆Pe =
P(le, Ne), αpe

= ζNe

le
, Fine

= ρoVeffNefpe
. Denote the

difference l̄(t) := l(t) − le, N̄(t) := N(t) − Ne, f̄p(t, x) :=
fp(t, x) − fpe

, F̄in(t) := Fin(t) − Fine
,∆P̄ (t) := ∆P (t) −

∆Pe and the constants
(a1, a2, a3) =

(
∂F
∂l ,

∂F
∂N , ∂F

∂fp

)∣∣∣
(le,Ne,fpe )

,

(b1, b2) =
(

∂P
∂l ,

∂P
∂N

)∣∣∣
(le,Ne)

.
(8)
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Then, it follows from (3),(4) and (7)-(8) that

a1 =
−KdVeffBρ0Ne

Seff (1− fpe
)[Bρ0 +Kd(L− le)]2

< 0, a2 = 0. (9)

The feedback law that we use is the following one:

N̄(t) = k1 ·∆P̄ (t), F̄in(t) = k2 ·∆P̄ (t), (10)

where ∆P (t), thus ∆P̄ (t), is measurable. The aim of stabi-
lization is to find constants k1, k2 ∈ R such that the closed-
loop system (2) and (5) with feedback (10) is asymptotically
stable, i.e., (l̄(t), f̄p(t, ·)) → 0 as t → ∞.

Concerning the well-posedness of the Cauchy problem (2)
and (5) with feedback (10), we have the following proposition.

Proposition 1. Let k1, k2 ∈ R be fixed. There exists ε > 0
such that for any l0 ∈ R, f0

p ∈ H2(0, 1) satisfying |l0− le|2+
∥f0

p (·)− fpe∥2H2(0,1) ⩽ ε, and the compatibility conditions at
the point (t, x) = (0, 0), system (2) and (5) with (10) has a
unique solution (l, fp) ∈ W 1,∞([0, T ))×C0([0, T );H2(0, 1))
for some T ∈ (0,∞]. Moreover, if |l(t) − le|2 + ∥fp(t, ·) −
fpe

∥2H2(0,1) ⩽ ε for all t ∈ [0, T ), then T = ∞.

Remark 1. The compatibility conditions at the point (t, x) =
(0, 0) are the following:

f0
p (0) =

Fin(0)

ρoVeffN(0)
; (11)

Ḟin(0)N(0)− Fin(0)Ṅ(0)

ρoVeffN(0)
+

ζN(0)

l0
f0′

p (0) = 0, (12)

where N(0), Fin(0) are determined by (4), (10) with l(0) = l0,
while Ṅ(0), Ḟin(0) are determined by differentiating (4) and
(10) together with l̇(0) = F (l0, N(0), f0

p (1)).

The proof of Proposition 1 is based on fixed point argument
and one can refer to [8] for the well-posedness of the corre-
sponding open-loop system. Our main result on stabilization
of the interface position l(t) and the filling ratio fp(t, x) is
the following theorem.

Theorem 1. Let k1, k2 ∈ R be such that∣∣∣∣a3b1(k2 − fpe
ρoVeffk1)

ρoVeffNe(1− k1b2)

∣∣∣∣ < |a1|, (13)

where a1, a3, b1, b2 are given in (8). Then, the nonlinear
system (2) and (5) is locally exponentially stable under the
feedback (10), i.e., there exist constants ε > 0, M > 0 and
ω > 0 such that for any l0 ∈ R, f0

p ∈ H2(0, 1) satisfying

|l0 − le|2 + ∥f0
p (·)− fpe∥2H2(0,1) ⩽ ε, (14)

and the compatibility conditions at the point (t, x) = (0, 0),
the solution of (2) and (5) with (10) satisfies

|l(t)− le|2 + ∥fp(t, ·)− fpe
∥2H2(0,1)

⩽ Me−ωt
(
|l0 − le|2 + ∥f0

p (·)− fpe
∥2H2(0,1)

)
, ∀t ⩾ 0.

(15)

Remark 2. The measurement on ∆P (t) is of practical rea-
son, thus the feedback (10) is indirect in the sense that the
measurements are made not on the state (l(t), fp(t, x)) itself.

The feedback controllers are linear and proportional to the
measurements, but highly nonlinear with respect to the state.

Remark 3. In practice, the controller saturation problems
should be taken in account. Therefore, the gains k1, k2 sat-
isfying (13) should be chosen properly under some natural
constraints, for instance, large k1, k2 might result into too
large screw speed and too large inlet flow. Additionally, large
k1, k2 might also reduce the range of the stabilizable state
(typically, the value ε > 0). On the other hand, small k1, k2
might result into too slow controls so that the time to reach
the set point would be too large.

Proof of Theorem 1: By definition of the equilibrium
(le, Ne, fpe) and the constants (a1, a2, a3, b1, b2), it is easy
to get by expansion and a2 = 0 in (9) that

F(l(t), N(t), fp(t, 1)) = (a1 + o(1)) l̄(t) + o(1) N̄(t)

+ (a3 + o(1)) f̄p(t, 1), (16)
∆P̄ (t) = (b1 + o(1)) l̄(t) + (b2 + o(1)) N̄(t). (17)

Furthermore, it follows from (10) and (17) that

∆P̄ =
( b1
1− k1b2

+ o(1)
)
l̄(t), (18)

F̄in(t) =
( k2b1
1− k1b2

+ o(1)
)
l̄(t), (19)

N̄(t) =
( k1b1
1− k1b2

+ o(1)
)
l̄(t), (20)

where o(1) represents various terms which tend to 0 when
|(l̄(t), N̄(t), f̄p(t, 1))| → 0.

Then we construct the Lyapunov functions relying on the
Lemmas 1, 2, 3 whose proofs are given in Appendix.

Let

V0(t) = l̄2(t) (21)

V1(t) =

∫ 1

0

e−γ1xf̄2
p (t, x) dx, (22)

V2(t) =

∫ 1

0

e−γ2xf2
px
(t, x) dx, (23)

V3(t) =

∫ 1

0

e−γ3xf2
pxx

(t, x) dx, (24)

where γi > 0 (i = 1, 2, 3) are constants to be chosen later.

Lemma 1. There exist positive constants A1, γ1, β0, β1, δ1
such that the following estimates hold for every solution to
system (2) and (5) with (10)

V̇0(t) +A1V̇1(t) ⩽− (β0 + o(1))V0(t)− (β1 + o(1))V1(t)

− (δ1 + o(1))f̄2
p (t, 1). (25)

Differentiating (5) with respect to x, we get
fpxt

+ αpfpxx
+ αpx

fpx
= 0,

fpx(0, x) = f0′

p (x),

fpx
(t, 0) =

−fpt
(t, 0)

αp|x=0
,

(26)

where

fpt
(t, 0) =

Ḟin(t)N(t)− Fin(t)Ṅ(t)

ρoVeffN2(t)
. (27)
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Lemma 2. There exist positive constants γ2, β2, δ2, θ2 such
that the following estimate holds for every solution to system
(2) and (5) with (10)

V̇2(t) ⩽− (β2 + o(1))V2(t)− (δ2 + o(1))f2
px
(t, 1)

+ θ2(V0(t) + f̄2
p (t, 1)). (28)

By differentiating (26), note that αpxx = 0, we derive that
fpxxt

+ αpfpxxx
+ 2αpx

fpxx
= 0,

fpxx
(0, x) = f0′′

p (x),

fpxx(t, 0) =
−fpxt

(t, 0) + αpx
|x=0fpx

(t, 0)

αp|x=0
,

(29)

where

fpxt
(t, 0) =

d

dt

( −1

αp|x=0
· Ḟin(t)N(t)− Fin(t)Ṅ(t)

ρoVeffN2(t)

)
. (30)

Lemma 3. There exist positive constants γ3, β3, δ3, θ3 such
that the following estimate holds for every solution to system
(2) and (5) with (10)

V̇3(t) ⩽− (β3 + o(1))V3(t)− (δ3 + o(1))f2
pxx

(t, 1)

+ θ3(V0(t) + f̄2
p (t, 1) + f2

px
(t, 1)). (31)

Finally, let the Lyapunov function be

L(t) = V3(t) +A3(V2(t) +A2(V0(t) +A1V1(t))), (32)

where A1 > 0 is such that (25) holds and A2, A3 > 0
will be chosen later. Obviously, L(t) is equivalent to l̄2(t) +
∥f̄p(t, ·)∥2H2(0,1). Then, by (25), (28), (31) and (32), one can
choose A2 > 0 and A3 > 0 successively large such that

L̇(t) ⩽ −(β + o(1))L(t) (33)

for some constant β > 0. We assume in a priori that

|(l̄(t), N̄(t), f̄p(t, 1))| ⩽ ε0 (34)

for some small ε0 > 0 such that |o(1)| ⩽ β
2 in (33). Then

L̇(t) ⩽ −β
2L(t), thus L(t) ⩽ L(0)e−

β
2 t. Thanks to the

assumption (14), (34) can be satisfied for all t ≥ 0 if ε > 0 is
small enough. The proof of Theorem 1 is thus complete.

Remark 4. The weight as e−γix is essential to get a strict
Lyapunov function. One can refer to the stabilization results
by such weighted Lyapunov functions, for quite general linear
hyperbolic systems in [21]; for one dimensional Euler equa-
tion with variable coefficients in [11]; for a conservation law
with nonlocal velocity in [4].

IV. SIMULATIONS

Computing the time integration of the semi-discretized
transport equations by finite volume with ODE45 routine of
MATLAB, the stability result is achieved under the assump-
tions of Theorem 1.

• Initial conditions:
f0
p (x) = 0.6905 + 0.025(1− cos(πx)) + 0.0117 sin(πx)
l0 = 1.5m or l0 = 0.6m

• Setpoint values: le = 1.37m, Ne = 220, fpe = 0.6
• Gain values: k1 = 0.01, k2 = 0.0001

For le ∈ (0, L) and Ne > 0, fpe is uniquely determined by
(7). The gain k1, k2 is chosen to satisfy (13). The initial data
(l0, f0

p (x)) are chosen to satisfy the compatibility conditions
(11) and (12) as well as the feedback law (10). While in
simulations for the case l0 = 0.6m, (12) is satisfied with
an error of order 10−20.

The simulations show the comparison between the con-
trollers (10) and the linear PI feedback of the unmeasurable
state l(t) defined as

N̄(t) =
k1b1

1− k1b2
l̄(t) + k1

∫
l̄(s)ds, (35)

F̄in(t) =
k2b1

1− k1b2
l̄(t) + k2

∫
l̄(s)ds. (36)

The proportional PI controllers (35)-(36) are motivated by
the estimated linear control laws (19)-(20). We emphasize that
the controller (10) is based on the accessible output pressure
measurement but remain highly nonlinear with respect to the
state variables.

Figures 2, 3 and 4 show that the trends of the state l(t),
the output pressure, ∆P (t), and the control actions Fin(t)
and N(t) are similar when the initial condition are closed
to the equilibrium le = 1.37m, namely for l0 = 1.5m. For
large initial data, namely, l0 = 0.6m, the pressure feedback
control law (10) allows faster convergence and hence stands as
a better approach due to the inaccessibility of the state l(t) and
the resulting performances. Moreover, Figure 4 shows that for
large initial data the compatibility conditions are not satisfied
for the PI controller. One should mention that a better tuning
of the PI gains might results in better performances.

V. CONCLUSION

In this paper, we study the stabilization of a physical model
for the extrusion process, which is described by conservation
laws coupled through a dynamical interface. The exponen-
tial stabilization is obtained for the closed-loop system with
natural but nonlinear feedback controls through indirect mea-
surements. The proof relies on Lyapunov approach. Numerical
simulations are made as supplementary to the results with a
comparison between the proposed approach and linear PI feed-
back controller based on the unmeasurable state variable. As a
future work, it would be interesting to study the controllability
of boundary profile, i.e., to reach the desired moisture and
temperature at the die under suitable controls.This problem
is rather challenging for mathematical theory but also very
useful in applications. Moreover, the proposed result might
be extended to a PI controller for complex screw extrusion
systems that include unmeasured disturbances.

APPENDIX

Physical definition of the parameters
L = 2 m Extruder Length
B = 2.4× 10−5 m4 Geometric parameter
Kd = 2× 10−2 m3 Geometric parameter
ζ = 0.003 m Screw Pitch
η = 125 Pa s−1 Melt viscosity
ρo = 350 kg m−3 Melt density
Seff = 0.014 m2 Effective area
Veff = ζSeff Effective volume
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Fig. 2. Interface l(t) and pressure difference ∆P (t)
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Fig. 3. Feed rate Fin(t) and Screw speed N(t)
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Proof of Lemma 1: Differentiating V0(t) with respect to t
and using (2), (16) and (20), one easily gets that

V̇0(t) =2l̄(t) · F(l(t), N(t), fp(t, 1))

=(2a1 + o(1))l̄2(t) + (2a3 + o(1))l̄(t)f̄p(t, 1). (37)

On the other hand, (6) and (16) yield that

αp = αpe
+ o(1), αpx

= o(1). (38)

Differentiating V1(t) gives, from (22), (38) and integration by
parts, that

V̇1(t) =BT1 +

∫ 1

0

(−γ1αp + αpx
)e−γ1xf̄2

p (t, x) dx

=BT1 − (γ1αpe
+ o(1))V1(t), (39)

where

BT1 = (−e−γ1αpe
+ o(1))f̄2

p (t, 1) + (αpe
+ o(1))f̄2

p (t, 0).
(40)

Note that by (5),(20)-(19), we have

f̄p(t, 0) =
Fin(t)

ρoVeffN(t)
− fpe = (θ1 + o(1))l̄(t), (41)

where θ1 =
b1(k2−fpeρoVeffk1)
ρoVeffNe(1−k1b2)

. Combining (38), (39), (40),
(41), we get consequently

V̇1(t) =− (γ1αpe
+ o(1))V1(t)− (e−γ1αpe

+ o(1))f̄2
p (t, 1)

+ (αpeθ
2
1 + o(1))V0(t). (42)

By (9) and the assumption (13), it is easy to get the existence
of A1 > 0 and γ1 > 0 (suitably small) such that(

2a1 +A1αpe
θ21 a3

a3 −A1e
−γ1αpe

)
(43)

is negative definite. This concludes the proof of Lemma 1.
Proof of Lemma 2. Differentiating (4) and (10) with respect
to t gives that,{

Ṅ(t) = k1 ·∆Ṗ (t), Ḟin(t) = k2 ·∆Ṗ (t),

∆Ṗ (t) = ∂P
∂l

∣∣
(l(t),N(t))

l̇(t) + ∂P
∂N

∣∣
(l(t),N(t))

Ṅ(t).
(44)

Then it follows from (2), (8), (16), (18) and (44) that

∆Ṗ (t) =

∂P
∂l

∣∣
(l(t),N(t))

1− k1
∂P
∂N

∣∣
(l(t),N(t))

· l̇(t)

=O(1)(l̄(t) + N̄(t) + f̄p(t, 1)), (45)

where O(1) denotes various terms which are uniformly
bounded when |(l̄(t), N̄(t), f̄p(t, 1))| → 0.

Combining (20), (26)-(27) and (44)-(45), we get easily that

fpx(t, 0) =O(1)(l̄(t) + f̄p(t, 1)). (46)

Differentiating (23) results in, by (26) and (38), that

V̇2(t) =BT2 +

∫ 1

0

(−γ2αp − αpx
)e−γ2xf2

px
(t, x) dx

=BT2 + (−γ2αpe
+ o(1))V2(t), (47)

where

BT2 =(−e−γ2αpe
+ o(1))f2

px
(t, 1)

+ (αpe + o(1))f2
px
(t, 0). (48)

Thanks to (38) and (46), (48) can be rewritten as

BT2 =(−e−γ2αpe
+ o(1))f2

px
(t, 1)

+O(1)(l̄2(t) + f̄2
p (t, 1)), (49)

which ends the proof of Lemma 2 with (47).
Proof of Lemma 3. Differentiating (24) gives, by (29) and
(38), that

V̇3(t) =BT3 +

∫ 1

0

[
− γ3αp − 3αpx

]
e−γ3xf2

pxx
dx

=BT3 + (−γ3αpe
+ o(1))V3(t), (50)
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where

BT3 =− (e−γ3αpe + o(1))f2
pxx

(t, 1)

+ (αpe
+ o(1))f2

pxx
(t, 0). (51)

In order to estimate fpxx
(t, 0) or fpxt

(t, 0), essentially we
need only to estimate F̈in(t) and N̈(t), according to (30) and
(44). On the other hand, (44) simply yields that

N̈(t) = k1∆P̈ (t), F̈in(t) = k2∆P̈ (t). (52)

Therefore, from (2), (16), (44) and (45), we have

∆P̈ (t) = O(1)
(
l̄(t) + N̄(t) + f̄p(t, 1) + fpt

(t, 1)
)
. (53)

From (30) to (53), we get

fpxt(t, 0) = O(1)
(
l̄(t) + N̄(t) + f̄p(t, 1) + fpt(t, 1)

)
. (54)

Combining (5), (20), (46), (29) and (54), we get further

fpxx
(t, 0) =O(1)

(
l̄(t) + f̄p(t, 1) + fpx

(t, 1)
)
. (55)

By (38) and (55), (51) becomes

BT3 =− (e−γ3αpe
+ o(1))f2

pxx
(t, 1)

+O(1)(l̄2(t) + f̄2
p (t, 1) + f2

px
(t, 1)). (56)

This implies the conclusion of Lemma 3.
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