Automatica 134 (2021) 109909

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

Automatica

automatica

Adaptive boundary control of reaction-diffusion PDEs with unknown

input delay™

Shanshan Wang *?, Jie Qi *¢, Mamadou Diagne ¢*

Check for
updates

2 College of Information science and Technology, Donghua University, Shanghai, 201620, China

b Engineering research Center of Digitized Textile and Fashion Technology of Ministry Education, Donghua University, Shanghai, 201620, China
¢ State Key Laboratory of Synthetical Automation for Process Industries, Shenyang, Liaoning, 110819, China

4 Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States of America

ARTICLE INFO ABSTRACT

Article history:

Received 23 August 2019

Received in revised form 19 April 2021
Accepted 1 August 2021

Available online 27 September 2021

Keywords:

Input delay
Adaptive control
PDE backstepping
Boundary control
Lyapunov design

We design an adaptive full-state feedback controller to stabilize a one-dimensional reaction-diffusion
equation with unknown boundary input delay. An infinite-dimensional representation of the actuator
delay is utilized to transform the system into a transport PDE cascading with a reaction-diffusion PDE.
A suitable parameter update law is designed to establish local boundedness of the system trajectories
and asymptotic convergence stability result using the well-known PDE backstepping technique and a
Lyapunov argument. Consistent simulation results are provided to support the theoretical results.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The control of diffusion PDEs (partial differential equations)
still stirs up a lot of interest owing to their impact on innumerable
physical systems. Various classes of spatio-temporal diffusion
PDEs have been used to characterize the dynamics of relevant
engineering processes including direct-contact membrane dis-
tillation processes (Eleiwi & Laleg-Kirati, 2018), tubular reac-
tor (Boskovic & Krstic, 2002; Orlov & Dochain, 2002), temperature
regulation over a catalytic bar (Dubljevic, Kobilarov, & Ng, 2010),
information spreading in online social media (Lei, Lin, & Wang,
2013), Lithium-ion batteries (Forman, Bashash, Stein, & Fathy,
2011) and multi-agent systems (Ferrari-Trecate, Buffa, & Gati,
2006; Qi, Tang and Wang, 2019).
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The literature devoted to the boundary control of parabolic
PDEs has flourished substantially within the past two decades.
Early contributions employed power series solutions to design
flatness-based boundary feedback controllers for linear and non-
linear diffusion systems (Meurer, Becker, & Zeitz, 2003; Meurer
& Zeitz, 2003), which have been later extended to systems with
higher-dimensional spatial domains (Meurer & Kugi, 2009). Moti-
vated by the stabilization of unstable heat equations, an
alternative control approach known as PDE backstepping tech-
nique emerges as a systematic design methodology (Boskovic,
Krstic, & Liu, 2001; Krstic & Smyshlyaev, 2008). Backstepping em-
ploys a change of coordinate, namely, a Volterra transformation
that maps originally unstable PDEs into a stable target system
to enable direct deduction of stabilizing boundary controllers
from the invertibility of the transformation. Over the last few
years, the aforesaid method has been successfully expanded to
exponentially stabilize challenging diffusion processes involv-
ing the 3-D formation of multi-agents (Qi, Vazquez, & Krstic,
2015), coupled reaction-diffusion systems with the same dif-
fusivity (Baccoli, Orlov, & Pisano, 2014) or spatially distributed
coefficients (Vazquez & Krstic, 2017) and several linear and non-
linear ordinary differential equations having a diffusion PDE ac-
tuator dynamics in fixed or time-varying spatial domains (Koga,
Diagne, & Krstic, 2019; Krstic, 2009a; Tang & Xie, 2011). Further
studies investigated the control of scalar reaction-diffusion PDEs
subject to constant boundary input delays considering a dead
time arising from the physical constraints such as communi-
cation lag times. In this case, the representation of the delay
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by a transport PDE cascading with the plant reaction-diffusion
dynamics has been exploited to compensate for the effect of the
known but arbitrarily large delay with the help of backstepping
design (Krstic, 2009b). Along the same line, our recent results ap-
plied the backstepping technique to design a delay-compensated
boundary controller for multi-agent systems described by a 3-D
reaction-diffusion equation defined on a cylindrical topology
when the delay acting at the boundary input is known (Qi,
Wang, Fang and Diagne, 2019; Wang, Qi, & Fang, 2017). As well,
backstepping method has been employed to compensate spatially
input distributed delays in reaction-diffusion PDEs (Qi & Krstic,
2021). Alternatively, a new design methodology has led to the
construction of a boundary controller based on an explicit form
of the classical Artstein transformation for the finite-dimensional
unstable part of the delay system derived from the expansion of
a 1-D reaction-diffusion PDE solutions as series of basis eigen-
functions (Prieur & Trelat, 2019). The same method has been
employed to stabilize several PDEs with input delays including
the linear Kuramoto-Sivashinsky equation (Guzman, Marx, &
Cerpa, 2019), diagonal infinite-dimensional systems (Lhachemi &
Prieur, 2021) with the analysis of robustness with respect to input
delays (Lhachemi, Prieur, & Shorten, 2019).

On the other hand, in Smyshlyaev and Krstic (2010), the design
of adaptive backstepping boundary controllers has been devel-
oped for various class of diffusion PDEs with unknown destabi-
lizing parameters such as the diffusivity, the reaction, or even
boundary coefficients. For hyperbolic PDEs, we refer the reader
to the rich literature (Anfinsen & Aamo, 2017a, 2017b, 2017c,
2018a, 2018b; Anfinsen, Diagne, Aamo, & Krstic, 2016, 2017;
Bernard & Krstic, 2014). The aforementioned results are built
extending the three-parameter identifiers proposed for nonlinear
ODEs (Krstic, Kanellakopoulos, & Kokotovic, 1995), enabling the
boundary adaptive control of several delay-free 1-D PDEs based
on Lyapunov, passivity, or swapping approaches. We emphasize
that the Lyapunov approach is known to provide superior tran-
sient performance properties as stated in Krstic and Smyshlyaev
(2008). Also, the sliding mode approach employed in Orlov, Frad-
kov, and Andrievsky (2020) provides good performance to adap-
tively stabilize uncertain distributed parameters as well as the
model reference adaptive control techniques (Bentsman & Orlov,
2001; Demetriou & Rosen, 1994; Smyshlyaev, Orlov, & Krstic,
2010).

In our present contribution, we consider the problem of stabi-
lizing a reaction-diffusion system with unknown and arbitrarily
large boundary input delay. The adaptive Lyapunov design used
in Bresch-Pietri and Krstic (2010) and Krstic and Bresch-Pietri
(2009) to construct delay-adaptive predictor feedback controllers
for linear ODE systems with unknown input delay is employed
to develop a delay-adaptive predictor feedback boundary con-
troller for the considered system. Possibly, our result represents
the first delay-adaptive PDE control scheme ever developed. Our
design relies on the backstepping method and our choice of
the unknown delay parameter’s update law leads to a target
system structured as a mixed PDE-PDE cascade system. Using a
Lyapunov argument, we establish the local boundedness of the
system trajectory and an asymptotic convergence stability result.
The invertibility of the backstepping transformation enables to
state the norm equivalence between the target system and the
plant dynamics resulting in local stability of the adaptively con-
trolled plant. Compared to Krstic and Bresch-Pietri (2009), the
system structure leads to an unbounded input operator at the
boundary of the PDE-PDE cascade system and only local stability
result in H! norm of the actuator state can be achieved via a
Lyapunov-based adaptive control design. It is worth mentioning
that backstepping has been used to stabilize both nonlinear ODEs
with complex input delays (Diagne, Bekiaris-Liberis and Krstic,
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2017; Diagne, Bekiaris-Liberis, Otto and Krstic, 2017) or uncertain
linear time-delay systems (Zhu & Krstic, 2015; Zhu, Krstic, &
Su, 2017). For identifying parameters and delays in linear ODEs
with measurable states, a different approach exploiting the weak
controllability argument has been developed in Belkoura and
Orlov (2002).

The paper is organized as follows. In Section 2 we briefly recall
the non-adaptive controller for the considered class of system.
Section 3 discusses the adaptive controller design in the presence
of an unknown boundary input delay. In Section 4, the closed-
loop system’s stability is stated and consistent simulation results
are shown in Section 5. The paper ends with concluding remarks
in Section 6.

Notation: Throughout the paper, we defined the L?> norm for a
function x(x) € L*[0, 1] as [Ix > = lIx|I?, = fol |x (x)|?dx, and the
H' norm for a function x(x) € L?[0, 1] as || x ”12-11 =|x ||22+||Xx||fz-

We introduce the Bessel function J, and the modi%ied Bessel
function I,,, where n = {1, 2, 3,...,5}

For any given function (-, D(t)), the following holds:

OV D) _ ) 20, D)
ot a(e)

(1)

2. Problem formulation and

controller

non-adaptive boundary

Consider the scalar reaction-diffusion PDE with a known and
arbitrarily long actuator delay D > 0 defined as

ur(x, t) = uw(x, t) + Au(x, t), (2)
u(0,t) =0, (3)
u(1,t) = U(t — D), (4)

where the full-state u(x, t), (x,t) € (0,1) x R4 is measurable
and the constant parameter A is known. As established in Krstic
(2009b), the delayed input U(t — D) can be written as a transport
equation cascading into (2) considering the infinite-dimensional
actuator state v(x,t) = U(t + D(x — 1)). Thus, system (2)-(4) is
equivalent to

Ur(X, t) = uy(x, t) + du(x, t), (5)
u(0,t) =0, u(1,t)=1v(0,t), (6)
Due(x, t) = vx(x, t), (7)
v(1,t) = U(t). (8)

Following Krstic (2009b), an exponentially stabilizing boundary
controller for the equivalent cascade system (5)-(8) is defined as
follows

1 1
U(t)zf y(l,y)U(y,t)derDf q(1, y)u(y, t)dy, (9)
0 0

where y(x,y) and q(x,y) are the controller gain kernels, which
satisfy the following equations:

(X, ¥) = Dyyy(x,¥) + Dry(x,y), (x,y)€ (0, 1], (10)
y(x,1)=y(x,0)=0, (11)
v(0,y) =k(1,y), (12)
4%, ¥) = —qy(x,¥), (x,y) €10, 1], (13)
q(x, 0) = —ypy(x, 1), (14)

where the kernel k(x, y) is governed by the following well-posed
PDE:

kXX(X7 y) = kyy(x, Y) + )\.k(X, J/), (Xa y) € [07 1]5 (15)
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A
k(x,0)=10, k(x,x)= _EX' (16)
The solution of the governing equations of k(x,y), q(x,y) and
y(x,y) are explicitly given as
(VA —y2))

k(x,y) = Ay ———+, (17)

AMx2 —y?)
qx,y) = —nkx-y1), (18)

o0 1
y(X,y) =2 Z PR TR iy - / sin(ns)k(1, s)ds,  (19)
0

n=1

where I; is an appropriate modified Bessel function and x € [0, 1].

The control law U(t) defined in (9) is a delay-compensated
feedback controller whose second term cancels the destabiliz-
ing effect of the actuator dynamics. The H' exponential sta-
bility of the closed-loop system consisting of (5), (7) together
with the controller (9) can be derived employing the following
backstepping transformation

wix, £) = ux, £) — / " kx uly, Oy, (20)
0

1
z(x, t) = v(x, t) — / y(x, yu(y, t)dy
0

X
=0 [ eyt ey 21)
0
together with the stable target system
wt(X7 t) = wXX(Xa t)v (22)
w(0, t) =0, (23)
w(1,t) =z(0,t), (24)
Dzi(x, t) = zy(x, t), (25)
z(1,t) = 0. (26)
The inverse of the transformation (20), (21) is given by
X
e t) = w0+ [ iyt ey (27)
0
1
u(x, t) = z(x, t) + / n(x, y)w(y, t)dy
0
X
) / px, Y)2(y, £)dy., (28)
0

where gain kernels I(x, y), n(x, y) and p(x, y) satisfy the following
partial differential equations

La(X,y) = Ly(x, ¥) — Al(x,y), (x,¥) €0, 1], (29)
I(x,0)=0, (30)
I(x, x) = —gx, (31)
nx(x,y) = Dnyy(x,y), (x,y) € (0, 1], (32)
n(x, 1) = n(x,0) =0, (33)
n(0,y) = k(1,y), (34)
pX(X7 y) = _py(x’ .y)v (X7 .y) € [Oa 1]’ (35)
p(x, 0) = —ny(x, 1). (36)

The solution to the equations of I(x,y), p(x,y) and n(x,y) are
computed as

I (Va6 =)
Ix,y) = —hy—F——=". (37)
Mx* —y?)

Automatica 134 (2021) 109909
plx,y) = —my(x —y, 1), (38)

00 1

nxy) =2 e P ¥ sin(nzy) - / sin(nzs)I(1, s)ds, (39)
n=1 0

where J; is an appropriate Bessel function and x € [0, 1] .

The derivation of such backstepping controllers has been de-
veloped in many contributions. Readers are referred to Krstic
(2009b), Qi, Wang et al. (2019) and Wang et al. (2017) where the
design of the controller is extensively discussed.

3. Design of a delay-adaptive boundary feedback control law
3.1. Adaptive controller design

Considering the plant (2)-(4) with an unknown delay D or
equivalently the cascade system (5)-(8) with an unknown spatial
domain length D, our goal is to design an adaptive boundary con-
troller that stabilizes the system’s dynamics under the following
assumption.

Assumption 1. The upper and lower bounds of D > 0, denoted
D and D, respectively, are known.

Based on the certainty equivalence principle, we define the
following adaptive controller

1
u(t) = / y(1,y, D(t)u(y, t)dy
0

1
+ Bo) / a1y, DO, )dy, (40)
0

which is similar to (9), but accounts for the estimate of D defined

as ﬁ(t). The estimate ﬁ(t) is governed by the update law ﬁ(t),
which is given in Section 3.3.

3.2. Target system for the plant with unknown input delay
To prove the stability of the plant (2)-(4), equivalently, the

system (5)-(8) under the control law (40), we introduce the
volterra transformation (u, v) — (w, z) consisting of (20) and

1
26, £) = v(x, £) — / y(x.y. D(OYu(y. t)dy
0

— Bo) / a(x.y. D)0y, £)y., (41)
0

whose inverse is defined as (27) together with
1
u(x, t) = z(x, t) + / n(x, y, D(O)w(y, t)dy
0

+ Do) / plx. y. D(E))2(y, £)dy. (42)
0

The gain kernels of the transformations (41) and (42) depend on
the estimated value of the unknown delay D(t) and are conse-
quently time-dependent whereas (21) and (28) are static kernel
functions involving a known and constant boundary input delay.
Using (20) and (41), system (5)-(8) maps into the following target
system

we(x, 1) = wi(x, ), (43)
w(0, t) = 0, (44)
w(l, t) = 2(0, t), (45)
Dzi(x, £) = zx(x, t) — D(£)Px(x, t) — DD(E)Ps(x, ), (46)
z(1,t) =0, (47)
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where f)(t) =D-— ﬁ(t) is the estimation error, P(x, t), i = {1, 2}
are functions defined below:

1
P](X, t) :M](X, D(t))Z(O, t) + / 'lU(_y, f)Mz(X, y7 E)(f))dy, (48)
0
Pax, t) = f 209, OMs(x. y. D(O))dy
0
1
+ f wly. OMa(x, y. DE))dy, (49)
0

where M;, i = {1, 2, 3, 4}, are the following functions

Mi(x, D(£)) = — p(x, 1, D(t)), (50)

N ~ 1 N
MZ(X, y, D(t)) = Vy(x’ 1’ D(t))l(lﬁ y) + %VX(Xﬂ y, D(t))

1
o / wlx, £, DION(E y)dE. (51)
D(t) Jy

X

Ms(x., y, D(t)) =D(t)* / Gp(x & D(O)p(E. y, D(1))d&

y

+D(t) / q(x, &, D(O))p(E, y, D(t))d&
y

+ q(x. y. D(t)) + D(t)gp(x. y. D(1)), (52)

A

Ma(x, y, D(t)) =D(t) / Gp(%. & D(O)(E. y. D(1))dé
0
+ [ et s Dt . Dleds
0

1
+ / Vo (%, £, D(EDIE, y)de
y

We introduce the following transformation to create homoge-
neous boundary conditions for the target system (43)-(47)

W(x, t) = w(x, t) — xz(0, £), (54)

which leads to the following PDE cascade system:

We(X, t) = WX, t) — x2:(0, t), (55)
(0, £) = (1, ) = 0, (56)
Dz(x, t) = z(x, t) — D(t)Py(x, t) — DD(E)Pa(x, 1), (57)
z(1,t) =0, (58)
where
1
By(x, £) =M (x, D(0))2(0. 1) + / ib(y. OMa(x, y. D(EY)dy
0
1
+ f Y200, M (x, 7. D()dy. (59)
0
Py(x, t) = f 2(y, )Ms(x, y, D(t))dy
0
1
+ f (W (y, t) 4 yz(0, t))Ma(x, y, D(t))dy, (60)
0

3.3. The parameter’s update law

To estimate the unknown parameter D, we choose the follow-
ing update law

D(t) = 6Projip y{T (1)},

where 7(t) is given as

0<6<1, (61)

1
(t) = —2/ (1 + x)z(x, t)Py(x, t)dx, (62)
0
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and the standard projection operator is defined as follows

0 D(t)=Dand t(t) < 0,
Projip pi{t()} =4 0 D(t) =D and t(t) > 0, (63)
7(t) otherwise.

Remark 1. The projection is needed to keep the parameter ﬁ(t)
within a priori set and cannot be viewed as a robustification
tool (Krstic & Smyshlyaev, 2008). In this case, it enables fast
adaption and ensures that the adaptive parameter D(t) does not
exceed its known maximum value D or fall below its known
minimum value D. In that sense, it prevents adaption transients
by restricting the size of the adaption gain.

The local stability result of the closed-loop system consisting
of (5)-(8), with update law (61)-(63) and the adaptive controller
(40), is stated in the following Theorem.

Theorem 1. Consider the closed-loop system consisting of the
plant (5)-(8), the control law (40), the update law (61)-(63) under
Assumption 1. Assuming the well-posedness of the closed-loop sys-
tem, local boundedness and asymptotic convergence of the system
trajectories are guaranteed and there exist positive constants p, R
such that if the initial conditions (ug, vo, Do) satisfy ¥ (0) < p,
where

1 1 1
wm:/ u(x, t)zdx—i—f v(x, t)zdx—i-/ ve(x, t)2dx
0 0 0

+ (0, £)? + D(t)?, (64)
the following holds:
¥(t) < RY(0), Vt=>D0. (65)
Furthermore,
tll)rgo XI;I}&)](] lu(x, t)] =0, (66)
lim max |v(x, t)] = 0. (67)

t—00 x€[0,1]

Remark 2. We emphasize that only a local stability result can be
ensured in our case due to the following technical issue. In fact,
the PDE-PDE cascade system (43)-(47) connected through the
boundary generates an unbounded input operator, which requires
the H! norm of the actuator state to establish the stability proof
with the help of a Lyapunov argument. Taking the derivative
of the Lyapunov function, the appearance of terms involving
zy(1,t) # 0 in the stability proof prevents the statement of a
global stability result. Similarly, for the ODE case in Krstic and
Bresch-Pietri (2009), the global stability result cannot be obtained
considering the H' norm of the actuator state in the Lyapunov
function.

4. Proof of the local stability of the delay-adaptive closed-loop
system

The local stability of the (u, v)-system (5)-(8) under the con-
trol law (40), and the update law (61)-(63) is established with
the following steps:

e First, we establish the norm equivalence stated in
Proposition 1, which will be used to deduce the stabil-
ity of the (u, v)-system knowing that of the (w, z)-system
(55)-(58).

e Second, we construct a Lyapunov function that ensures the
local stability of the (w, z)-system.

e Then, we establish the regulation of the state u(x,t) and
v(x, t).
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Proposition 1. The following estimates hold between the state
of the original system (5)-(8), and the state of the target system
(55)-(58):

Iull® + vl + lloxll* + (0, £?

< rllwl? + r2llzll® + r3llzell® + raz(0, )%, (68)
W1% + l1zl1* + llz]1*> + 2(0, t)?
< sillull® + s2llvl + ssllvell® + s4v(0, £)?, (69)

where 1; and s;, i =
constants given by

1 X 1
" z4(1+ / / l(x,y)zdydx)+3 / (1, yYdy
0 0 0

1 10D (!
/ I(1, y)y’dy + 72/ ly(1, y)*dy, (70)
0 T 0

{1, 2, 3,4}, are sufficiently large positive

+ Q—nz
B D* 1 4
ry >4+ 5D%1,(1, 1)* + 3 /0 (51yyy(1,y)2 + Dzly(l,y)z) dy

D*(D+1) (! 4
+ 7/ (5Ly(1y + 11, yP)dy. (71)
2 0 D
r3 =5, (72)
4 1 X 1
r4 >34 - (1 +f / l(x,y)zdde> +f I(1,y)*dy
3 0 0 0
+ /11(1 Ydy + 10D /11 (1,y)d (73)
3072 A ,y)ay 372 A i1, y) ay,
1 X _ 1
1 z4+4/ f k(x, y)’dydx + 16/3Df kyy(1,y)*dy
0 0 0
10 6 _ 1
+ ( + 68 + 16;3D/\2) / k(1, y)*dy, (74)
3 D 0
>3+ D? (218 (4D*). +2D + 1 3 1612
s2 >3+ B (4D*% 42D + 1) >t
3(D+1 1 _ _ -
+%>/ k(1,y)*dy + D*(4A(4D*A + 2D + 1)
U 0

1
+ 3)/ (ky(1,y)* + Ak(1,y)?) dy + 4D%ky(1, 1)?
0

1
+4D*(2D*1 + D + 1)/ (kyy(1,¥)* + 22k(1, y)*) dy
0

+ 8D* fo 1 (kyyy(1,¥)* + A%k, (1, y)?) dy, (75)
524, sz (76)
eD(zx—é)
where 8 = T

The proof of Proposition 1 is stated in Appendix B.

Next, we show the local stability for the closed-loop system
consisting of the (u, v)-system under the control law (40), and
with the update law (61)-(63).

4.1. Local stability of the closed-loop system

To establish the local stability of the target system (55)-(58),
we introduce a Lyapunov-Krasovskii-type function

1 1
Vi(t) =AD/ w(x, t)zdx+D/ (1+x)(z(x, t)?
0 0

D(t)?
20

D
+ z(x, £)*)dx + 520, £ +

where A is a positive constant.
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Since our Lyapunov function involves the H! norm of z(x, t),
we define the z,(x, t)-system, by taking the partial derivative of
(57) with respect to x combined with the partial derivative of (58)
with respect to t. The following PDE is obtained:
Dz¢(X, t) = Za(X, t) = D()Pix(x, t) — DD(t)Pa(x, 1), (78)
2(1,t) = D(O)P1(1, £) + DD(E)P(1, 1), (79)
wherve I31x(x, t) and Iv’zx(x, t) are the partial derivatives of 131(x, t)
and P,(x, t) with respect to x, respectively.

Taking the time derivative of (77) along (55)-(58), (78) and
(79), we get

Vi(t) zzAnfO1 W(X, t)be(X, £)dX + AEq(t)
+2 /0](1 + X)z(x, )zy(x, t)dx + (0, t)z,(0, t)
+2 /0 1(1 + X)z4(X, )z, t)dx
+ D(t) <2A /01 W(x, t)xP;(0, t)dx — z(0, t)P1(0, t)
-2 /01(1 + x)z(x, t)P;(x, t)dx
-2 (14 0500 Ol t)dx) ~ b2
+D(t) <2A /01 B(x, OB (0, £)dx — 2(0, £)PH(0, £)
-2 /01(1 + x)z(x, £)P5(x, t)dx

1
-2 / (1 + x)ze(x, £)Pay(x, t)dx), (80)
0
where
1
Eqi(t) = —2/ w(x, t)xzy(0, t)dx. (81)
0

Using integration by parts, Cauchy-Schwarz and Young’s inequal-
ities, we derive the following estimate

1
E(t) = / ibn(x, C2(0, t)dx,
0

1 3/ e 3
5( / ﬁ)x(x,t)zdx> ( / x*2,(0, t)zdx) ,
0 0

1 2 t 2
<— dx + —2z,(0, t)°. 82
=2, [lwyl + 10 (. ) (82)

Thus,

- . A At
Vi(t) < — 2AD|[be |1 4 — [[ixl|> + ==2(0, £)* — 2(0, £ )?
214 10

1
—llzlI* = llzel* 4+ 221, £)* — 2,0, t)* + 72(0, t)?
12

1
+ %zx(o, t)? + D(t) <2A / B(x, £xP1(0, £)dx
0

1
— 20, 1 (0, £)—2 / (14 x)2(x, OB (x. )dx
0

1 A
-2 / (1 4 x)ze(x, t)Prx(x, t)dx) —ﬁ(r)¥
0

. 1
+ DD(t) <2A / W(x, t)xP5(0, t)dx — z(0, t)P,(0, )
0
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1 v
- 2/ (14 x)z(x, t)P,(x, t)dx
0

1
-2 f (1 + x)z(x, £)Pax(x, t)dx) . (83)
0
From (79), we obtain the following relation
222(1, 1) =2(D(t)Py(1, £) + DD(OP>(1, D)2,
<4D(t)?Py(1, t) + 4D*D(t)*Py(1, £ )2, (84)
and using (84) leads to

. 1
Vi(t) < —A (zD - 2—) lwxll? — 12112 — N1z
3
1 A
(1= —)z0. 07 = (1=-22 —2) 200, ¢7
2l 10 2
+ 4D(t)*By(1, t)? + 4D?D(t)?By(1, t)?

1
+b(t)(2A/ W(x, t)xP;(0, t)dx — z(0, £)P1(0, t)
0

1
—2/ (1 + x)z(x, t)Py(x, t)dx
0

1 A
2 f (1 4 X)24(x, OPre(x, r)dx) - b2
0

. 1
+Db(t)<2A/ W(x, t)xP(0, t)dx — z(0, £)P5(0, t)
0
1
-2 / (1 + x)z(x, £)Py(x, t)dx
0

1
-2 / (1+x)zx(x,t)132x(x,t)dx>, (85)
0

1 1 Al B .
whereZD—71>0 1—72>O —Tg—fzzo,leadmg

10— 5L2

t0—<L1, %<L2<2andO<A<

Hence using Poincare’s inequality, we arrive at

) 1 1
Vi(t) < — ZA <2D - 271> wlI* = zl1* — llzll®
- (1 - i) 20, £ + 4D*D(t 2By (1, t)?
2[2
1
+ 4D(t)*Py(1, t) + D(t) <2A/ w(x, t)xP;(0, t)dx
0
1
—z(0, t)131(0, t)— 2[ (1 4+ x)z(x, t)131(x, t)dx
0
1 A
2 / (14 x)230x, DPro(x. r)dx) ~ b2
0
. 1
+ DD(t) <2A/ W(x, t)xP(0, t)dx — z(0, £)P5(0, t)
0
1
- 2/ (14 x)z(x, t)Py(x, t)dx
0
1
-2 / (1 4 X)ze(x, t)Pay(x, t)dx) . (86)
0
Choosing 1 = min { 1A <2Q — i) , 1— i } and

Vo(t) = lwl* + 1zII* + llzlI* + 2(0, t %, (87)
the following inequality holds

Vi(6) < — nVo(t) -+ 4D(¢ Py (1, £)? + 4D2D(t )2 Py(1, )2
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1
+ D(¢) <2A/ W(x, t)xP;(0, t)dx — z(0, t)P1(0, t)
0

1
-2 / (14 x)z(x, t)P;(x, t)dx
0

b(e)

1
—2/ (14 x)zy(x, t)PlX(x t)dx > D(t)
0 0

. 1
+ DD(t) <2A / W(x, )XP(0, t)dx — z(0, t)P5(0, t)
0
1 v
— 2/ (14 x)z(x, t)P(x, t)dx
0
1 v
—2[ (1 + X)zy(x, t)Pax(x, t)dx) . (88)
0
With the help of Agmon’s, Cauchy-Schwarz and Young'’s inequal-

ities, and combining (59) and (60), one can perform quite long
but simple calculations to derive the following estimates:

Pi(1,0)* < LVo(t),  Py(1,1)* < LVo(t), (89)

24 /01 W(x, t)xP;(0, t)dx + z(0, £)P1(0, t) < LV,(t), (90)
24 /0 1 W(x, xP5(0, £)dx + 2(0, £)P5(0, t) < LV(t), (91)
2 /01(1 + X)z(x, )Py (x, t)dx < LV(t), (92)

2 /o 1(1 + X)zX, £)Pry(X, £)dx < LVo(1), (93)

2 /0 1(1 + X)z(x, t)Py(x, t)dx < LVo(t), (94)

2 /0 1(1 + X)zx(x, E)Pay(x, t)dx < LVy(t), (95)

where the parameter L is defined below

L= max {3M1 (1, D / M>(1, y, dy,
D=<D(t)<D
f Ma(1,y, D(t))*dy, / M;s(1,y, D(t)*dy,

3 / Ma(1,y. D(t)dy, 2(A+1)< / M4(o,y,ﬁ(r))2dy> ,
0 0

1

1 2
2A+1) |M1(o,ﬁ(r))|+2< / Mz(o,y,f)(r))zdy) ,
0

(/Olml(x,ﬁ(mzdx)i

(] [ ueeroroa |
[yer)
([ [ wansiroms) ]
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1 3
( / Mlx(x,b(t»zdx)
0
(/ / Ma(x. y. D )dydx) ,
1 ) ;
( / M3(x,x,D(t))2dx>
0

(/ / Ms(x, y, D(t)) dydx)
(/ / Myy(x, y, t)) clydx) . (96)

Based on the property of the kernels k(x, y) and I(x, y), we have
proved the boundedness of all the above terms in Appendix C.

Thus, using (61), (62), (89)-(95) together with the standard
properties of the projection operator, we have

Vi(t) < — nVo(t) + 4D*L6?Vo(t)? + 4LD(t*Vo(t) + 3DL*OVy(t)?
+ 4L|D(t)|Vo(t). (97)

Moreover, from (77), knowing that

D(t)? < 20V;(t) — DO min{2A, 1}Vy(t), (98)

and using Cauchy-Schwarz and Young’s inequalities, we arrive at

e DUR & 0

Do
< = 4 —Vi(t) — = min{2A, 1}Vo(t), (99
5t =3+ Vi) — o= min{24, 1Vo(t),  (99)

which finally leads to

V1(t) < - <7’] — 8LOVy(t) — 4L (g + §V1(t))> Vo(t)
B <2QL9 min{2A, 1}

o

— 4AD’130%Vy(t) — 3DL29) Vo(t)?.

€
(100)

Again, from (77), we have

D

5 min{2A, 1}Vy(t) < Vi(t). (101)

Substituting (101) into (100), we derive the following estimate

Vi(t) < — (n — 8OLV;(t) — 4L (g + gvl(r))) Vo(t)

2DLO min{24, 1} 8D21302
- - - Vi(t)
€ D min{2A, 1}

—3DIL%0) Vo(t ). (102)

Selecting ¢ as
2D 2A,1
s<mm{ 7 mm_{}} (103)
2L 3DL

to ensure p; > 0 and restricting the initial conditions so that

Vi(0)< p1, (104)
where
+~ .| Dmin{2A, 1} /2D min{2A, 1} -
01 = min = —3DL ),
8D?129 £
— 2L
&(n —2Le) (105)
4160(2e + 1)
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we obtain

Vi < =81(6)Vo(t) — 8a(t)Vo(t)%, (106)
where

6
81(t) =n — 8LOV;(t) — 4L<2 + ZV(t )) (107)
2DL6 min{2A, 1 8D2L392 -
sy(t) = 22O min{2A. 1} 8L Vi(t)— 3DI20,  (108)
€ D min{2A, 1}

are nonnegative functions if the initial conditions satisfy (104).
Hence, Vi(t) < V41(0), Vt > 0.
Using (68), we get
W(t) <max({ry, ra, 3,14, 1} (101 + lIz]I* + 1]l
+2(0, t)* + D(t)? ),
<max{r1, ra, r3, T4, 1}

min{AD, 5, 55 }

£0,V1(t) < p2V1(0),
where ¥(t) is defined in (64) and
max{ry, 1,13, 14, 1
pp = x{ry, 12 3 4 }. (110)
mm{AD, 5 25}

From (104) and (109), we obtain p = p10>.
Using (69) and (77), it follows that

Vi(t),

(109)

D(t)?
20

’

D(t)?
20

o ] b
Vi(t) <ADII1 + 2DlzI + 2DIl? + 52(0, ¢ +

< max{AD, 2D)(||w|1* + 1)1 + llzlI* + (0, £)?) +

< max{AD, 2D} max{s1, s, 53, sa} (Iull* + [lv|®
D(t)
20

+lvell® + (0, £)%) +

< max {max{AD, 2D} max({sy, Sa, S3, Sa},

1
%} w(t), (111)

and hence,

V1(0) < max {max{AI_), 2D} max({si, Sy, S3, Sa}, >

1
} w(0). (112)
Combining (109) and (112), we get (65) with

1
R = p, max {max{AD 2D} max({s1, sy, 53, Sa}, Y. } (113)
which completes the local stability proof. ®
Next, we prove the regulation of the distributed plant and
actuator states u(x,t) and v(x,t) to complete the proof of
Theorem 1.

4.2. Pointwise boundedness and regulation of the distributed state

From (77) and (102), we get the boundedness of ||w]|, |z|,
llzx|l, z(0, t) and D(t). Moreover, from (68), we also get the bound-
edness of ||ul|, [[v]l, [lvx]l and v(0, t). We will prove (66) and (67)
in Theorem 1 by applying Lemma D.2 (Smyshlyaev & Krstic, 2010)
to ensure the following facts:

(1) 191, 121, llz«ll, z(0, t) and D(t) are integrable in time,
2) (lwl2), £(liz)1?) and &(Jjz]|?) are bounded,
(3) llwxll? is bounded.

(1) Time integrability
Knowing that

t t
/ w(o)l*dr < ;/ 81(7)Vo(r)dz, (114)
0 info<r < 81(7) Jo



S. Wang, J. Qi and M. Diagne
and using (107), the following equality is stated

6
inf 8;(t) =y — 8LAp; — 4L (f +fp1>. (115)
&

o<rt<t 2

Since Vl(t) < —81(t)Vo(t) — 82(t)Vo(t)? and 8,(t) is a nonnegative
function, we have

Vi < —81(t)Vo(t). (116)
Integrating (116) over [0, t] leads to
t
/ 81(tWo(z)d < V(0) < pr. (117)
0

Substituting (115) and (117) into (114), we get |w]|| is square
integrable in time. Similarly, one can establish that ||z||, |z]],
z(0, t) and D(t) are square-integrable in time. H
(2) Boundedness of some functions’ time derivatives
Define Lyapunov function

1! D [!
Vs(t) :f/ d)(x,t)zdx—l—b1—/ (14 x)z(x, t)?dx
2 Jo 2 Jo

D 1
+ bq/ (1 + x)z(x, t)*dx, (118)
0

where by is a positive constant. Taking the derivative of (118)
with respect to time, we obtain

Vy(t) =/01 W(x, t)we(x, t)dx—i—b]D/;(l + X)z(x, t)z:(x, t)dx
+byD /0 1(1 + X)z4(X, )z (x, t)dx,
:/: W(X, )We(X, t)dx + byEx(t) + E3(t)
+ b /0 1(1 + X)z(x, t)zy(x, t)dx
- b1f)(t)/01(1 +X)z(x, )Py (x, t)dx
— byD(t) /0 1(1 + X)z4(X, t)Pr(x, t)dx

. 1
— byDD(t) / (14 x)z(x, t)Py(x, t)dx
0

. 1
— byDD(t) / (1 + X)z4(x, t)Pay(x, t)dx, (119)
0
where
1
Exlt) = / (14 X)23(x, Dl £, (120)
0
1
Es(t) = — f W(x, t)xz:(0, t)dx. (121)
0
Using integration by parts we derive
1 1
Ex(t) =2z4(1, 1) — =20, t)* — = llz%,
2 2
1 1 N
<- EZX(O, ty — 5||Zx||2 + 2|D(t)|*P4(1, £)?
+ 2D21D(6)Pa(1, £ (122)

By using Cauchy-Schwarz and Young’s inequalities, the following
holds

1 13
E3(t) <—|lw|1* + =z(0, t)*,
2L3 6

1 . 2 L3 2 [ 2% 2
<—||wl|* + —=2z4(0, t)* + —|D(t)|“P1(0, t
<5 NI+ 52520,00 + S B0 0.0
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12 A .
+ §|D(f)|zpz(0,f)2~ (123)

Hence, using Cauchy-Schwarz inequality and combining (122),
(123), we deduce the following inequality

. o 1 . bl b] bl
Vo(t) < — 2 -— 2——22——22——20,t2
2(t) = — [lwxllI” + o o™ = S lzl” = S lladl™ = = (0, 1)

b i3 2 ~ v
— | = —— ) z(0,¢ 2b|D()| ||z ]| || P
(2 ZDZ) +(0, £) + 2bs |D(0)| 121 |
+ 201 DID()I 12 1P ]| + 251 |DCOI |zl 1Py

- A v L ~ v
+ 2biDIDO] 2 1Paxll + 525 ID(OPP1(0, 0
la A “ ~ v
+ 5 IDOPPAO. € + 2b1 ()P, £
+ 26:D%D(e)Py(1, 1) (124)

Next, selecting (3 = 4 and b; > Diz, we have

. 1 . b, b, _ A
Va(t) < — gnwn2 - 3||z||2 - 5||zx||2 + biD?(D(t)* |1z
~ 2 v — A
+ by [D(6)|"[|zII* + b1 |IP1[|* + b1D*[D(t)[? (|, 1
~ 2 v v v
+ b1 DO l1zell* + bilIP2]I? + by [|Pixll* + by [|Pax
2 - v X v
+ ElD(t)lzPl(o, t)* + 2|D(t)[*P5(0, t)?

+ 2by | D(OIPP1(1, )% + 2b1 D2[D(0)2Py(1, £ )2,
< —caVa+fi(t)Va + fo(t), (125)
where we employ Poincare’s and Young’s inequalities. Here, c; =

min [% %} and fi(t), i = {1, 2} are defined as

2 -, ~ 2
ft) = B(DZID(f)I2 -+ |D(t)] ), (126)
2 . . - . .
fHt) = §|D(t)|2P1(0, £)% 4 2b4|D(t)|*P1(1, £)* + by [P ]2
+ 21D(O12By(0, £ + 2b, D [D(t)2Py(1, )2
+ b1l[P2]12 + by|[P1ell® + b1 || Pax . (127)

Combining (59), (60) with (89)-(95), we get that |D(t)], P1(0, t?,
Pi(1,6)%, [IP1]%, Py(0, )%, Po(1,t7, [IP2lI%, [IPwll?, [[Paxl® are
bounded and integrable. Thereby, fi(t) and f>(t) are bounded and
integrable functions of time. Thus, from (125), we deduce that
V, < oo, which proves the boundedness of %(||1Z;||2), Lz1)
and %(Hzxuz). Moreover, by Lemma D.2 (Smyshlyaev & Krstic,
2010), it holds that ||w], ||z, lzx]| — 0 as t — oo. Knowing
that z(0, t) < 2||z||||zx|l, s0 z(0,t) > 0 ast — oc0. W

(3) Boundedness of ||w,||

Define the following Lyapunov function

1 1 D [!
Vs = 5/ Wy(x, r)zdx+b2§/ (1 + x)z(x, t)*dx, (128)
0 0

where b, is a positive constant. Using the integration by parts,
the derivative of (128) with respect to time is written as

1 1
Vs(t) = / Wy(X, t)Wye(x, t)dx + byD f (14 Xx)zx(x, t)zx(x, t)dx,
0 0

1
— EA(6) + baEx(t) — byB(D) / (14 X)z(x OPlx, )dlx
0

. 1
— b,0D(0) / (14 X024(x, OPs(x, D)%, (129)
0
where E,(t) is defined in (120), and
1
Ei(t) = — f (. )iy (x, £)dx. (130)
0
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Next, we derive the following estimate:
1 1
Eq(t) = — / Wi (x, £)dx + / WXz (0, t)dx,
0 0
. 1 . L
< = il + 5 il + 520,07,

1 2ph
1- 7) Il + fID(t)I Py(0, t)’

+—z0t
2D <0, £)° +

where we have used Cauchy-Schwarz and Young’s inequalities.
Substituting (122) and (131) into (129), and again, using Cauchy-
Schwarz inequality, we arrive at the following inequality

. 1 . b b t
Vs(t) < — (1 - a) lltbxell> — £||Zx||2 - ( 22 Zgz)zx(o ty?

lg ~ 2
+EID()IP1(0 £)° + 2I()IP(O t)

2| ( IP1(0, )2, (131)

+ 2byD(E)By(1, £ + 26,02 D(E)2B(1, £)?
+ 2b,[D(O)] 12| | Prell + 2b2DID(E)] 12| | P - (132)

Next, choosing ¢4 = 1 and b, > é, we get

. 1 . b, — A
Vs(t) < — gllwxll2 - EIIZXII2 + by D?[D(E) |21

+ by [|Prell? + baD? | zil|? + by [|Pa?

4 BPE0. £ + L ID(ORBA(0, 1)
5 DEs ,

+ 2b,|D(t)*Py(1, £)° + 2b, D% [D(0)*Po(1, £,
< —aVs+ (Vs + f3(t), (133)
where we use Poincare’s and Young’s inequalities. We recall that
fi(t) defined in (126) is bounded, and

. . 1~
f5(t) =2 |Prxl|* + bs | Pax ]l + EID(I)IZH(O, t)?

1 x “ - v
+ §|D(t)|2P2(0, t)* + 2b,|D(0)[*P1(1, t)?

+ 2b,D? D(E)2By(1, 12, (134)

is bounded and integrable in time. Using Lemma D.3 (Smyshlyaev
& Krstic, 2010), we get that ||wy| is bounded which implies the
boundedness of ||wy| based on the following relation

lwell> < 2[llI* + 22(0, t)?, (135)

that is possible to infer from (54). ®

Proof of (66) and (67) in Theorem 1. Finally, since ||w], ||z,
lz¢ll, z(0, t) = 0 ast — oo, from (68), we have |[u]l?, [v]%, llvxll%,
v(0,t)> — 0 as t — oo. Then, knowing that ||wy]| is bounded,
from (27) and (37), we deduce that

lul® < 20322 + 7)lwyll? (136)

is bounded, as well. By Agmon’s inequality, one can state that
u(x, t)* < 2||ul||lux|l, which proves (66). Likewise, one can derive
the proof of (67), which completes the proof of Theorem 1. W

5. Simulation results
To illustrate the feasibility of the proposed adaptive boundary

controller design, we simulate the closed-loop system consisting
of (5)-(8), the control law (40), and the update law (61)-(63). The
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value of the delay is set to D = 1, assuming the known upper and
lower bounds as D = 2 and D = 0.1, respectively. The adaptation
gain is set to & = 0.71, and the plant reaction coefficient is
chosen as A = 10. For two distinct initial values of the delay,
namely, D(0) = 0.1 and D(0) = 2, the simulations are performed
considering u(x,0) = ug(x) = cos(2wx) as the distributed
plant’s state at the initial time t = 0. The initial condition of
the distributed actuator state is set to vg(x) = cos(2wx). The
numerical values of the parameters given in Theorem (68) are
p = 31.6699 and R = 3.0302 x 10%°. Moreover, from the initial
data, ¥(0) = 22.5492 and ¥(0) = 22.7392 for D(0) = 0.1 and
D(0) = 2, respectively, which is consistent with the inequality
v (0) < p.

Fig. 1 shows the convergence of the plant’s state. In the ab-
sence of adaptation, but with a “mismatch input delay” set to
D(t) = 2 (the true delay being D = 1), the control law (40)
results into a slower convergence. Fig. 2 (a) shows the dynamics
of the L2-norm of the distributed state with and without adaption.
Clearly, an adaptive controller allows faster convergence than a
nonadaptive scheme irrespective of initial conditions. Fig. 2(b)
presents the dynamics of the control effort, while Fig. 2(c) illus-
trates the evolution of the update law. Last but not least, Fig. 2(d)
reflects a good estimate of the delay with D(t), which converges
to the true value D = 1.

6. Conclusion

In this paper, we design an adaptive controller and a delay
parameter’s update law to stabilize a scalar reaction-diffusion
system with an arbitrarily large and unknown boundary input
delay. Based on a Lyapunov argument, the adaptively controlled
plant is locally L?-stable. Numerical simulations are presented to
support the theoretical statements. Further research includes the
designing of an observer for the case of an unmeasurable actuator
state combined with the design of a controller that ensures a
global stability result.

Appendix A. Proof the boundedness of kernels

The proof of the boundedness of all kernels is established using
the following Lemmas.

Lemma 1. The kernel n(x, y, (t)) satisfies the following diffusion
PDE:

nx(X, y, D(t)) = D(t)nyy(x, y, D(t)), (A1)
n(x, 1,D(t)) = n(x. 0, D(t)) = 0, (A2)

and the following hold:

/ f n(x, y, D(t))*dydx < D
(A.3)
2D <1 - e—§’3> :
f / ns(x, y, D(t)Ydydx < 5 / Ly(1,y)"dy,
’ (A4)
where
5 (VA=)
(1,y) = -y —F———". (A.5)
M1—=y?)
Ly(1,y) = _szm _ )Lsy3j3 ( A+ _yz)) (A6)
’ A1 —y?)
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X time(sec)
(a) The distributed state u(x,¢) with nonadaptive con-
trol and D = 2.

0 ;
X time(sec)
(b) The distributed state u(x,t) with D(0) = 0.1.

0 :
X time(sec)
(c) The distributed state u(x,t) with D(0) = 2.

Fig. 1. The distributed state dynamics under closed-loop control.

are continuous functions with

A3 32

A
(1,1)=—-2 B 5

2’ lyy(l, 1) = (A7)

Proof. To prove (A.3), we use the following fact

d 1 R 1 R R
3ax |, oy Dy = [y, Dleyntr.y. Doy,
0 0
1
— b(o) f 1%, 7. DOy (x, v, DOy,
0

1
B(e) fo my(x, v, DOy,

10
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0.6 T T
——nonadaptive
—D(0)=0.1
—D(0)=2
0.4 (=DO=2 ||
0.2 1
0

0
1 2 3 4 5
(a) L%-norm of the distributed state u(x,1).

1 v ' ' :
|—nonadaptive

. —D(0)=0.1 |/
|—D(0)=2

0.6 ]

0.4 ]

02" ]

0
0 1

2 3 4 5
(b) The time-evolution of the control signal.

Il w2

Control effort

15
—nonadaptive
10 —D(0)=0.1 |1
—D(0)=2
5 (0) |
S 0
-5 -
-10 b
-15 ; .
0 1 2 3 4 5
(c) The dynamics of the update law D(z).
2 T
——nonadaptive
— D(0)=0.1
15¢ —D(0)=2 ||
-- D=1

time(sec)

(d) Tpe time-evolution of the estimate of the unknown param-
eter D(t).

Fig. 2. The closed-loop system dynamics with and without adaptation.

7.[2

1
< b f Ny, DYy,  (A8)
0

where we use integration by parts and the Wirtinger inequality.
Hence, by the comparison principle

1 R 2 1 R
/ n(x,y, D(t)Ydy < e” 'z XX / n(0, y, D(t))*dy. (A9)
0 0
Knowing that (0, y, ﬁ(t)) =1(1,y), we get
1 A 2 1
/ a(x,y, D(t)Pdy < e~ 5 Do / (1, y)dy. (A.10)
0 0
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and integrating (A.10) with respect to x, we obtain

1, 1
/ / (x,y,D dydx</ e”TD(”"dxf 11, y)*dy,
0 0
2 A
2 (1 - e”zD(f>>

1
- I(1, y)*dy.
B2 /O (1, y)dy
(A11)

=

Finally, from the boundedness of f)(t), inequality (A.3) is deduced.
Using a similar calculation as for proving inequality (A.3), one can
easily prove (A4). W

Lemma 2. The kernel n(x,y, ﬁ(t)) satisfies the diffusion PDE (A.1),
(A.2) and the following hold:

1 -1 1
/ ny(x, 1, D(t)dx <= / L,(1, y)*dy
0 2 Jo

o+ [,
+ 2D /o I(1, y)°dy, (A12)
1 ) D2 [l
|t 1B <2 [ 1.7y
0 2 Jo
D+1) [!
( 5 ) f (1, y)*dy. (A.13)
0
with
Ji (VA1 —y?) L (VA1 —y?)
(1,y) ( ) y ( ) (A14)
(1—1y2) A1 —y%)
L (VA1 —=y?) I (VA1 =y?)
Lyy(1,y) 332 2()\(] 2) )_ 2y? 3(( )2
a (1-y%)
Ja (VA1 —y?)
_ A4y4—4< 2) (A.15)
(A1 —y?))
being continuous functions and,
YR
ly(lvl)__g—i, (A.16)
Lyy(1, 1 a 23 A7
(1, 1) “382 8 8 (A.17)
Proof. To prove (A.12), we multiply the PDE
(A.18)

(
nu(x.y, D(£)) = D(t)nyy(x, y. D(1))
by 2yn,(x, y, ( )) to arrive at the equality below

2y77x(x’ yﬂ D(t))ny(x7 ys D(t)) = ZD(f)yny(& ys D(t))rlyy(x» .V, ﬁ(t))
(A.19)

Integrating (A.19) with respect to y, and using integration by parts
we get

1
2 f ynu(x, y. D())ny(x, y, D(¢))dy
0

= D(t)ny(x, 1, D(t))* = D(t) / ny(x, y, D(t)dy. (A.20)

By using Cauchy-Schwarz and Young's inequalities, the following
holds

1
nx(x, y, D(t))*dy
0

1
ny(x, 1, D(t))z S%
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(bty+1) ! .
+ CED [y Dlopay (A21)
D(t) Jo
Then, integrating (A.21) with respect to x we arrive at
1
/ ny(x, 1, D nx(x,y, D(t 2dydx
0
D(t)+ 1
( +)//nyxy, ) dydx.
(A.22)

On the right side of the above inequality, the double integral
terms are bounded as follows

1 1
/ / ny(x,y, DEOPdydx < —— [ 11, y)dy, (A23)
2D(t) Jo
bty [°
/ / (X, y, dydx < %/ Iy(l’y)Zdy, (A.24)
0

Here, we prove (A.24) as an example. From (A.1)-(A.2), we have,

d1

1
- Ly, D(t))2d
dXZ/O nx(x, y, D(t))*dy

Now, integrating (A.25) with respect to x, we obtain

1 1
. 1
x,y, D(t))*dydx < —;
/ofo"”( y. DOy dy 20(t)

From (A.1) and the fact that 1,(0, y, ( )N =1(1,y, D(t)) one can
straightforwardly deduce (A.24). Substltutmg (A.23) and (A.24)
into (A.22), one can derive (A.12). Likewise, one can easily get
(A.13) and complete the proof of the lemma. ®

1
—B(e) / Myt v, DYy, (A25)
0

1
f 1y(0.y. DOy (A26)
0

In an analogous way, we state the following two lemmas
which can be proved employing the method presented above.

Lemma 3. The kernel y(x,y,
diffusion PDE:

WX, ¥, D(£)) = D(t)yyy(x, v, D(£)) + D(E)ry (x, y, D(t)),
y(x,1,D(t)) = y(x, 0, D(¢)) = 0,

and the following hold:

f / (x,y, D t)) dydx <

( )) satisfies the following reaction—

2 (eD(ZA——Z) _

1) ]
/ K1, y)dy,
0

"~ D(4A—n?)
(A.29)
f / Vx(X, y, ))*dydx
( D(2)L7f) l) ]
2 2 2
= 4) — 72 /0 (kyy(1,¥)" + A7k(1, y)*)dy, (A.30)
/ / Y X, y, D(t)*dydx
GD3 (eD(ZAZ) _1 1
= 4n — 2 /0 (R (1, ) +42%Ky (1, )°
+ A*k(1,y)*)dy, (A31)
where
I (VA=)
V== (A32)

VA1 —=y?)
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b(xu—ﬁﬂ_

ky,(1,y) = 3A%y , (A.33)
W A1 —y2) ( Ml_yz)>3
L (VAT =y2)
Kyyyy(1,y) = =150}y —— £~
(Vi =y)
14( A(l—y2)) Is( k(l—yz))
+100YyY —————— 2 Wy —————— (A.34)
(1= y%) (Via=y)
are continuous functions with
A 2332
k(1,1) ===, ky(1,1)= -+ — A.35
k(1, 1) 5 (1, 1) TR (A.35)
Kyyyy(1, 1) = 2 +5k4 5 (A.36)
PRI 3840 192 16 '

Lemma 4. The kernel y(x,y, ﬁ(t)) satisfies the reaction-diffusion
PDE (A.27)-(A.28) and the following hold:

1
/ w(x, 1, D(t)Ydx
0

- - S g2
20(4D*A +2D + 1) (eD(Z)"T) - 1)

D+1
< 5 +A+ —
D*(4x — 72) 2D
1 1
- f K1, yPdy + / k(1. yPdy. (A37)
0 0
1
f Y, 1, D(£))2dx
0
813 (efw—é) -~ 1) .
< (4D*) + 2D + 1 k(1, y)*d
=( +2D+1) T /0 k(1,y)°dy
1
+(@2D*r+D+ 1)/ (kyy (1, ¥ + 22k(1, y)*)dy
0
1
+ A(4D?) + 2D + 1)/ (ky(1,)* + Ak(1,y)*)dy
0
1
+ 2D? / (Kyyy(1, y)* + 22k (1, y)*)dy, (A.38)
0

1
/ Yyxx(X, 1, D(t))*dx
0
320215 (ebmfé) _ 1)

40 — 72

1
< (4D*r+2D+1) f k(1,y)*dy
0

1
+2D°A(4D*x + 2D + 1) / ( Kyyy (1, ¥)2 4 Akyy(1, y)
0
2 2 3 2 352 n2 N
+ 30%Kky(1,y)* + 32°k(1,)* ) dy + T(2D A+D+1)

1
) / (Kyyyy(1, ¥ + 42%kyy(1, ¥)* + A%k(1, y)*)dy
0

1
+ 3D* / (Kyyyyy (1, ¥)* + 427 kyy (1, y)* 4+ 1%ky(1, y)?)dy,
0
(A.39)
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where
n(VAT=y) (V=)
ky(1,y) = —2 S e e
A1 —y?) AM1—=y%)
(A.40)
L (VA=) (VA=)
kyyy(1,y) = 34 W — 617y ﬁ
VA1 —y?)
L (VA=)
+atyt— 2~ (A41)
(M1 =y?)
s (Vi =)
Kyyyyy(1,¥) = —151 —>3
M1 —y?)
14( (1 —yz)) Is( A(1 —yz))
+ 45)\'4y2—2 _ )\.5y4—5
(A1 -2) ( (1 —y2)>
Is (VA(T=12)
+ 218y (A42)
(A1 =y?))
are continuous functions with
A2 A a3 3a2
ky(],l)=§—5, I(yyy(l,])=%j—§+?, (A43)
kyyyy(1,1) = a » + 15 57 (A.44)
IR T 46080 256 0 128 16 ’

Appendix B. Proof of Proposition 1

To prove Proposition 1, we derive the following estimate of
the [? norm of u:

1 1 X
/ u(x, t’dx = / (ﬁ)(x,t)+ / I(x, y)w(y, t)dy
0 0 0

X 2
+xz(0, t)+/ I(x, y)yz(0, t)dy) dx,
0
2

1 1 X
< 4f w(x, tdx + 4[ (/ I(x, y)w(y, t)dy) dx
0 0 0

2

4 1 X
+§z(0, tY +4 f < / I(x, y)yz(0, t)dy) dx,
0 0
1 X
<4 1+/ / l(x,y)zdde) [l )?
0 0
1

1 X
+ —2(0, t? (4 +/ / l(x,y)zdydx> , (B.1)
3 o Jo

where we use Cauchy-Schwarz and Young's inequalities. Then,
the L? norm of v satisfies the following relations

1 1 X
/ o(x, £)2dx = f (z(x, 0)+ Do) / plx, v, DOY(y. t)dy
0 0 0
1 2
+/ n(x, y, D())(y, t) + yz(0, t))dy> dx,
0

2

1 1 1
<4 / 2(x, £Pdx + 4 / ( / n(x, v, Doy, r)dy) dx
0 0 0

2

1 1
4 / ( / n(x,y,b(t))yz(o,wdy) dx
0 0



S. Wang, J. Qi and M. Diagne

v’ [ 1 ( / ey, DLy, t)dy)z dx,
of [
+4<1+D2/ / ny(X—y,l,fJ(t))Zdde> Iz

20, 1) // (x,y, D

where we use Cauchy-Schwarz and Young's inequalities, and the
fact that p(x, y, D(t)) = —ny(x — y, 1, D (t)). Since

//nyx y,lDt) dydx—//nys,],D Ydsdx

) dydx| >

))dydx, (B.2)

/ / ny(s, 1, D(t)) dsdx<[ ny(x, 1, D(t))2dx, (B.3)
it is clear that 0
/0 v(x, tYdx < zOt// (x,y, D(t)dydx
4 (1 + D /0 mx. 1, (o)) dx) 2|1
+4 /0 1 /O ln(x,y, D(t))*dydx]| |, (B.4)

Next, considering the first derivative of v(x, t) with respect to x,
we derive the following estimates

1 1 1
/ v, £k = f (zx(x,r)+ f (k. v, DOV, £)dy
0 0 0
1
+ f (X, y, D(£))yz(0, t)dy + D(t)p(x, x, D(t))z(x, t)
0

X 2
+A(>/pxxy, Bty )dy) ax,

1 1 1
<5 f 2(x UPdx + 5 f ( f (.. D). t)dy)
0 0 0
1 1 R 2
+5/ (/ nx(x,y, D(t))yz(0, t)dy) dx
0 0
1
+ 5D? / (p(x, x, D(t))z(x, t))*dx
B 01 X 2
+5D2/ (/ Px(x, ¥, D(t))z (y,t)dy>
< 5/ / nx(x,y, D
+/ / Nay(X — ¥, 1,15(t))2dydx> IzI1* + 51|z
0 0
5 5 1 1 R 5
+2200,0) / f m(x.y. D(t)Pdydx,
0 0

again using Cauchy-Schwarz and Young’s inequalities combined

2
dx

dx,

)Y dydx||wl|* + 5D* (I,(1, 1)?

(B.5)

with the fact that p(x, x, D(t)) = —n,(0, 1, D(t)) = —L,(1, 1) and
px(X.y, D(t)) = —ng(x — y, 1, D(t)). Since
/ / nxyx—y,l,D dydx—f / nxy(s,l,D Ydsdx,
< / To(x 1LD(OPdx,  (B6)
0
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we deduce that

1 1 1
/ v, tPdx < 5 / / (. v, D(e) P dydxlib |
0 0 0

1
450 (zym, 17+ / Ty(x 1, D(r))zdx> Iz
0

5 1 1 R
4512 + 2200, 67 / / ma(x, v, DO dydx.
0 0
(B7)

From (42) and (54), we have

1 2
v(0,t) = (Z(O, t) +/ n(0, y, D(O))(wb(y, £) + y2(0, t))dy) ,
0
1 2
<3z(0,t) +3 </ n(0, y, D(t))(y, t)dy>
0
2

1
+3 ( / 7(0, v, D(O)y2(0, r)dy) ,
0

1 1
53/ 11, yYdyllw]* +z(0, t)? (3+/ l(l,y)2dy),
0 0
(B.8)

where 7(0,y, D(t)) = I(1,y). Combining (B.1), (B.4), (B.7), (B.3),
Lemmas 1 and 2, one derives (68). Finally, using Lemmas 3 and
4, one can establish (69) in a similar way.

Appendix C. Proof of the boundedness of the M; functions

The boundedness of the functions M;, i = {1, 2, 3, 4} is estab-
lished based on Lemmas 2-4 and the following lemmas.

Lemma 5. For the function M(x, If)(t)) defined in (50), the follow-
ing inequalities hold:

IM1(0, D(£)| < [ky(1, 1), (C.1)
Mi(1, D(0))* < ky(1, 1) + /01 w(x, 1, D(t))dx

+ fo 1 yx(%, 1, D(t))?dx, (C2)

01M1(X, D(t))?dx < /01 yy(x, 1, D(t)Ydx, (C3)

O]Mlx(x, D(t))*dx < /0 1 VX, 1, D(t))?dx. (C4)

Proof. From the function M;(x, f)(t)) defined in (50), we can get
(C.1), (C.3), (C4) directly. To prove (C.2), we use Agmon’s and
Young’s inequalities to get the following estimates

Mi(1,D(t))® = w(1, 1, D(t))?,

1
2

1
< (0, 1,D(t) + 2 (/ yx 1, ﬁ(t))zdx>
0

1

1 2
: ( f V(X 1,b<t)>2dx> ,
0

1
< (0, 1. D) + f yy(x, 1. D(0)dx

0

(C5)
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D(t)) = k(1, y), we get
%(0, 1,D(t)) = ky(1, 1), (C.6)

and substituting (C.6) into (C.5), one can obtain (C.2) and com-
plete the proof of the lemma. ®

Since (0, y,

Likewise, we can proof the following three lemmas.

Lemma 6. For the function M,(x,y, ﬁ(t)) defined in (51), the
following inequalities hold:

1
f My(0, . D(t)Pdy
0

1
< 3ky(1, 1)2/ I(1, y)zdy+6/ (kyy (1, y)* + 22k(1, y)*)dy

(/[ o).

1
/ My(1, y, De)Pdy < 3My(1, D)) / (1., yPdy
0 0

(C.7)

3 _ 1
+o <2D2 / k(1,7 + A2K(1, )y

/ / (Vx X y!
. <1 +/ / I(x, y)zdydx),
/ / My(x, yv
1 X
<5 / f y(x, y. D(1))*dydx (1 + f / l(x,y)zdde>
D* Jo Jo o Jo
1 1
+3 / M;(x, D(t))2dx / I(1, y)2dy,
0 0
1 1
f f (Ms(x. v, D(0))Pdydx
/ f Yex(x, v, D(£))*dydx <1+/ / I(x, y)zdydx>

+3 / Mus(x, D()dlx / 11,y dy
0 0

” + VX, Y, (r))z)dde>

O
=2

))?dydx

(C9)

(C.10)

Lemma 7. For the function Ms(x,y, ﬁ(t)) defined in (52), the
following inequalities hold:

1
f M(x, x D(0)/2dx < ky(1, 172,
0

(C.11)
/ (1., Doy
<4 /O l(yy(x, 1,D())” + yyx(x, 1, D(1)))dx
+ 4D? /:(yy(x, 1, D(£))* + yyx(x, 1, D(t))*)dx
: /01 ny(x, 1, D(t))?dx, (C.12)

1 X
/ / Ms(x, y, D(t))*dydx
0 0

1
<4 / (1 1. DO + yyulx, 1. D(E)P)dx
0
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1
+ 4D? / (7y(%, 1, D(£))* + pyx(x, 1, D(£))*)dx
0

1
- / ny(x, 1, D(t))*dx
0

(C.13)
1 X .
/ / Mx(x, y. D(t)Pdydx
0 0
1
<5 f (Ayn(. 1, DOY + vy, 1. D))
0
1
+5D? (kyu, 17 +4/ YilX, 1, D(£))*dx
0
1 1
+ / yyxx(x,l,b(t))2dx> / ny(x, 1, D(t))?dx. (C.14)
0 0

Lemma 8. For the function My(x,y, ﬁ(t)) defined in (53),
My4(0, y, D(t)) = 0, and the following inequalities hold:
1

Ma(1,y, D(t))*dy

S~

<

Di (20 /(kyy(l ¥P + 22k(1, y)*)dx

/ / Ya(X, y7 +Vxx(x Y, ( ))z)dx>
1+f/ xydydx)+4// (x,y,D t)dydx

1, D(6))?)

/—\

(Vy(x 1, D( )) + vx(x, dx, (C.15)

1

(X, Y, (t)) dydx

1 1 1 X
. / v(x, y, D(t))?dydx (1+ / / l(x,y)dydx>
0 0 0 0

1
4 / (1 1, DO + yyulx, 1. D(O))dx

s~
ho\

IA
‘D‘J;

1 1
: / / n(x, y, D(t))dydx, (C.16)
0 0
1 1
f / Mas(x.y. D(t)Pdydx
0 0
1
<7( / (4, 1, DI + pymal, 1, ()P
+ky(1, 1)? / f n(x, y, t))dydx
DZ/ / Y%, ¥, D)) + yaclx, y, D(0))?)dydx
o<l+/ / l(x,y)dydx). (C17)
0 0
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