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Boundary Control of Nonlinear ODE/Wave PDE
Systems with Spatially-Varying Propagation Speed

Xiushan Cai and Mamadou Diagne

Abstract—We consider the boundary control of a nonlinear
ODE actuated through a wave equation whose propagation speed
is spatially-varying. The ODE state is driven by the uncon-
trolled boundary of the wave equation. We design a nonlinear
backstepping compensator to enable global asymptotic stability
of the closed-loop system. We deduce the controller design
and the stability proof by introducing a two-step backstepping
transformation. The first transformation recasts the original
system into a coupled 2× 2 first-order hyperbolic system with
spatially-varying coefficients cascading into a nonlinear ODE.
The second transformation is used in the design of a compensator
for the resulting cascaded system. Our design offers a global
stability result that is guaranteed assuming that the spatially-
varying propagation speed is continuously differentiable and
positive. Moreover, for nonlinear systems, our result is the first
contribution enabling actual compensation of actuator delays
governed by a coupled first-order hyperbolic PDEs induced by a
wave PDE dynamics with spatially-varying propagation speed.
The validity of the proposed controller is illustrated by the
benchmark system controlled via a cable.

Index Terms—Nonlinear system, wave PDE, predictor feed-
back control, spatially-varying coefficients.

I. INTRODUCTION

Recent studies using backstepping control technique have
enabled the stabilization of nonlinear ordinary differential
equation (ODE) systems with input delays that depend on the
ODE state in [1], [2], [3], [4], as well as the uncontrolled-or
controlled-boundary value of the partial differential equation
(PDE) state in [5], [6], [7], [8]. Later, the method has been
extended to deal with the stabilization problem of nonlinear
systems with actuator dynamics governed by wave PDE with
moving boundary that depends on the ODE state [9], [10],
[11]. The method has also been employed to control transport
PDE-ODE cascades with delayed input [12], as well as with
state-dependent propagation speed [13], [14].

The result of [15] on the boundary feedback control of
PDE-ODE cascaded systems highlighted the potential of the
PDE control for various physical systems. Along the same
lines, in [16], the stabilization of a linear ODE whose actuator
dynamics is governed by a first-order linear hyperbolic PDE
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is achieved via backstepping design. Using a two-step back-
stepping method, boundary control of linear ODE with linear
2× 2 hyperbolic systems with spatially-varying coefficients
and dynamic boundary conditions has been established in
[18] and results dealing with the inverse optimal control for
systems with input delays can be found in [19], [20], [21],
[22]. The cascaded system consisting of an ODE actuated via
a hyperbolic PDE is relevant to many engineering problems
including metal rolling processes [23], and metal cutting pro-
cesses [24], vehicular traffic flow [25], moisture in convective
flows [26], transport phenomena in gasoline engines [27], [28],
commercial fuels by blending [29].

The particular case of actuator dynamics governed by a
wave PDE is quite interesting and has been proven to en-
able stabilization of stick-slip instabilities and bit-bouncing
phenomena in oil drilling processes [13], [30], [31], [32],
[33]. These phenomena lead to growing torsional and axial
vibrations resulting from the complex interaction between
the drill bit and the deeply cracked rock when operating
drill strings [34]. In fact, neglecting the damping coefficients
between the mud and the pipe, the axial and torsional ex-
citations of the drill string can be described by a wave
PDE cascading into a nonlinear ODE governing the dynamic
boundary condition at the bit-rock point of contact. Through
linear and bilinear matrix inequalities techniques, feedback
controllers are established guaranteeing ultimate boundedness
of the system trajectories and leading consequently to the
suppression of harmful dynamics in drilling system [35]. The
dynamics of a flexible cable crane with a load can be expressed
by a wave PDE/ nonlinear ODE cascaded system [36]. One
should mention recent advances achieved in stabilizing 2×2
coupled hyperbolic PDEs in cascade with linear ODEs to
cancel oscillations of tension and cage in dual-cable mining
elevators [37] and deep-sea construction [38].

In the present work, we deal with a problem that is similar
but not equivalent to the model used to stabilize oscillations
in drilling systems. The main goal of this contribution is to
design a compensator for the delay induced by the wave PDE
with a spatially distributed propagation speed. Though many
similarities might be found in the existing literature regarding
the stability proof rational, the derived predictor state cannot
be obtained by extending any of the existing results based
on PDE backstepping design. The key difference between the
structure of the considered system and the one investigated
in [9] arises after transforming the original wave PDE into
a linear 2×2 hyperbolic system. Clearly, in [9], the resulting
transport PDEs are decoupled while the presence of a spatially
distributed coefficient induces strongly coupled hyperbolic
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PDEs with spatially distributed coefficients cascading with a
nonlinear ODE in our case. The strong coupling makes the
design of an actuator dynamics compensator non-trivial and
different from [9] and [10], [11], which deal with constant
propagation speed. Boundary controllers for consisting of a
linear ODE in cascade with coupled hyperbolic PDEs can
be found in [37], [38]. Mathematically, a novel two-step
backstepping transformation is employed to derive a non-
standard target system whose stability is established using a
Lyapunov argument. The resulting boundary controller is a
predictor-feedback control law, which compensates the wave
actuator dynamics and guarantees global asymptotic stability
of the closed-loop system.

This paper is organized as follows: the system’s description,
the main result are presented in Section II. The transformation
of the original system into a 2× 2 coupled linear hyperbolic
PDEs is in Section III. A first backstepping transformation is
introduced in Section IV-A. A second backstepping transfor-
mation is employed to design a compensator for the resulting
decoupled system in Section IV-B. The stability analysis
of the target system is established in Section V. Stability
of the original system is stated in Section VI. Finally, an
example is provided in Section VII, and concluding remarks
are emphasized in Section VIII.

Notation. We use the common definitions of class K ,
K∞, K L functions from [29]. For an n-vector, | · | denotes the
usual Euclidean norm. For a scalar function u(·, t), we denote
with ‖u(t)‖∞ its supremum norm, i.e. ‖u(t)‖∞ = sup

x∈[0,L]
|u(x, t)| .

II. PROBLEM STATEMENT AND MAIN RESULT

A. System description
We consider a cascaded system consisting of a nonlinear

ODE whose actuation path is governed by a wave PDE with
spatially-varying propagation speed. The cascaded system has
the structure

Ẋ(t) = f (X(t),u(0, t)), (1)
∂ttu(x, t) = v(x)∂xxu(x, t), (2)
∂xu(0, t) = 0, (3)
∂xu(L, t) =U(t), (4)

where t ≥ 0,0 ≤ x ≤ L and X ∈ Rn, u ∈ R,U ∈ R are ODE
state, PDE state, and control input, respectively, and f : Rn×
R→ Rn is locally Lipschitz with f (0,0) = 0, v : [0,L]→ R+.

We design a predictor control that stabilizes the PDE/ODE
cascaded system, under the following Assumptions.

Assumption 1: Propagation speed v(x) is continuously dif-
ferentiable and positive for all x ∈ [0,L].

Remark 1: Denote

υ = inf
x∈[0,L]

v(x), υ = sup
x∈[0,L]

v(x), (5)

for all x ∈ [0,L], the following holds

υ ≥ v(x)≥ υ > 0. (6)

Assumption 2: System Ẋ = f (X ,κ(X)+υ) is input-to-state
stable with respect to υ and the function κ : Rn → R is

continuously differentiable with locally Lipschitz derivative
∂κ(X)

∂X and it satisfies κ(0) = 0.
Now, consider υ ∈ R and define the variables

Z(t) =
[

X(t)
u(0, t)

]
, ϕ(Z(t),υ) =

[
f (X(t),u(0, t))

υ

]
.

(7)
Assumption 3: System Ż = ϕ(Z,υ) is strongly for-

ward/backward complete with respect to υ , that is, there
exist smooth positive definite functions R1,R2 and class K∞

functions α1, · · · ,α6 such that for all Z ∈ Rn+1 and υ ∈ R,

α1(|Z|)≤ R1(Z) ≤ α2(|Z|) (8)
∂R1(Z)

∂Z
ϕ(Z,υ)≤ R1(Z)+α3(|υ |) (9)

α4(|Z|)≤ R2(Z) ≤ α5(|Z|) (10)

−∂R2(Z)
∂Z

ϕ(Z,υ)≤ R2(Z)+α6(|υ |). (11)

Assumption 4: System Ż = ϕ(Z,µ(Z) + υ) is strongly
backward complete with respect to υ , that is, there exist a
smooth positive definite function R3 and class K∞ functions
α7, α8, α9 such that for Z ∈ Rn+1 and υ ∈ R,

α7(|Z|) ≤ R3(Z) ≤ α8(|Z|) (12)

−∂R3(Z)
∂Z

ϕ(Z,µ(Z)+υ) ≤ R3(Z)+α9(|υ |). (13)

Remark 2: The wave PDE described by (2)–(4) induces an
input delay on the nonlinear dynamics of (1). For instance,
an actuator dynamics governed by a pure transport PDE with
spatially varying coefficient, defined as

Ẋ(t) = f (X(t),u(0, t)), (14)
∂tu(x, t) = v(x)∂xu(x, t), u(L, t) =U(t), (15)

is equivalent to the nonlinear system with input delay Ẋ(t) =
f (X(t),U(φ(t))), where φ(t) = t−

∫ L
0 v−1(s)ds.

B. Main results

Suppose the existence of a nominal controller κ : Rn→ R
that stabilizes the delay-free plant, namely, the control law κ

is such that the closed-loop system Ẋ(t) = f (X(t),κ(X(t))) is
globally asymptotically stable. The predictor feedback control
for system (1)–(4) is given by

U(t) =−c1
e
∫ L

0
v′(r)
4v(r) dr

2
√

v(L)
(p2(L, t)−κ(p1(L, t)))

+
e
∫ L

0
v′(r)
4v(r) dr

2
√

v(L)

∂κ(p1(L, t))
∂ p1

f (p1(L, t), p2(L, t))

− 1
2
√

v(L)

(
∂tu(L, t)−

√
v(L)∂xu(L, t)

)
+

1
2
√

v(L)

∫ L

0
K11(L,s)

(
∂tu(s, t)+

√
v(s)∂su(s, t)

)
ds

+
1

2
√

v(L)

∫ L

0
K12(L,s)

(
∂tu(s, t)−

√
v(s)∂su(s, t)

)
ds,

(16)
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where p1 ∈ Rn, p2 ∈ R are given by

p1(x, t) = X(t)+
∫ x

0

f (p1(y, t), p2(y, t))√
v(y)

dy, (17)

p2(x, t) = u(0, t)+
∫ x

0

(
1√
v(y)
−
∫ x

y

K11(σ ,y)√
v(σ)

dσ

)

× e−
∫ y

0
v′(r)
4v(r) dr

(∂tu(y, t)+
√

v(y)∂yu(y, t))dy

−
∫ x

0

∫ x

y

K12(σ ,y)√
v(σ)

dσ

× e−
∫ y

0
v′(r)
4v(r) dr

(∂tu(y, t)−
√

v(y)∂yu(y, t))dy, (18)

for all x ∈ [0,L] with initial conditions as

p1(x,0) = X(0)+
∫ x

0

f (p1(y,0), p2(y,0))√
v(y)

dy (19)

p2(x,0) = u(0,0)+
∫ x

0

(
1√
v(y)
−
∫ x

y

K11(σ ,y)√
v(σ)

dσ

)

× e−
∫ y

0
v′(r)
4v(r) dr

(∂tu(y,0)+
√

v(y)∂yu(y,0))dy

−
∫ x

0

∫ x

y

K12(σ ,y)√
v(σ)

dσ

× e−
∫ y

0
v′(r)
4v(r) dr

(∂tu(y,0)−
√

v(y)∂yu(y,0))dy. (20)

The gain c1 in (16) is an arbitrary constant while the kernel
gains K11 and K12 are solutions to the following gain kernel
PDEs:

A (x)∂xK(x,s)+∂s(K(x,s)A (s)) = K(x,s)B(s) (21)
K(x,x)A (x)−A (x)K(x,x) = B(x) (22)

K11(x,0) = K12(x,0) (23)
K21(x,0) = K22(x,0) (24)

where (21) is defined on {(x,s) : 0≤ s≤ x≤ 1}, and

K(x,s) =
[

K11(x,s) K12(x,s)
K21(x,s) K22(x,s)

]
∈ R2×2, (25)

and

A (x) =
[√

v(x) 0
0 −

√
v(x)

]
,B(x) =

 0 − v′(x)
4
√

v(x)
v′(x)

4
√

v(x)
0

 .
(26)

Theorem 1: Consider system (1)–(4) together with the con-
trol law (16)–(18), for any initial condition u(·,0) ∈C1[0,1],
ut(·,0) ∈ C[0,1], which is compatible with the feedback law
(16)–(18) and which is such that ux(0,0) = 0. Under As-
sumptions 1–4, the closed-loop system has a unique solu-
tion X(t)∈C1([0,∞),Rn), (u(·, t),ut(·, t))∈C([0,∞),C1[0,1]×
C[0,1]). Moreover, there is a K L function β such that

Ω(t) ≤ β (Ω(0), t) (27)
Ω(t) = |X(t)|+‖u(t)‖∞ +‖ut(t)‖∞ +‖ux(t)‖∞, (28)

for all t ≥ 0.
Stability analysis of the closed-loop system will be derived

in the following five steps:

1) Introduction of two transformations to recast the system
into a coupled 2× 2 hyperbolic PDEs with spatially-
varying coefficients is shown in Section III.

2) Removal of the internal PDE states coupling acting
on the resulting 2× 2 the hyperbolic PDEs via a first
backstepping transformation is shown in Section IV-A.

3) The predictor feedback of the equivalent decoupled
PDE/nonlinear ODE target system obtained from a sec-
ond backstepping transformation is introduced in Section
IV-B.

4) Stability analysis for the target system is provided in
Section V.

5) Proof of stability of the original cascaded system is
established in Section VI.

Remark 3: The proof of the well-posedness of the gain
kernel PDEs defined in (21)–(24) can be found in [39] which
deals with the stabilization of a 2×2 coupled hyperbolic PDE
using backstepping technique.

III. FROM A WAVE PDE/ODE CASCADED SYSTEM TO A
COUPLED 2×2 HYPERBOLIC PDE SYSTEM WITH

SPATIALLY-VARYING COEFFICIENTS

In this section we employ two changes of coordinates de-
noted Transformation I and Transformation II in order to map
system (1)–(4) into a suitable coupled first-order hyperbolic
system cascading into a nonlinear ODE.

A. Coupled hyperbolic system: Transformation I

First, we introduce the following change of coordinate

ζ (x, t) = ∂tu(x, t)+
√

v(x)∂xu(x, t), (29)

η(x, t) = ∂tu(x, t)−
√

v(x)∂xu(x, t) , (30)

which in reverse is written as

∂tu(x, t) =
ζ (x, t)+η(x, t)

2
, (31)

∂xu(x, t) =
ζ (x, t)−η(x, t)

2
√

v(x)
. (32)

Taking the time and spatial derivatives of (29) and (30), we
map the original system (2)–(4) into the following coupled
hyperbolic PDE cascading with the nonlinear ODE defined in
(1)(see Fig. 1).

Ẋ = f (X ,u(0, t)) (33)

∂tξ (x, t) = A (x)∂xξ (x, t)+B0(x)ξ (x, t) (34)

∂tu(0, t) = ζ (0, t) (35)

η(0, t) = ζ (0, t) (36)

ζ (L, t) = η(L, t)+2
√

v(L)U(t), (37)
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Fig. 1: Equivalent 2× 2 coupled hyperbolic PDEs system
cascading into a nonlinear ODE

where

ξ (x, t) =
[

ζ (x, t)
η(x, t)

]
,B0(x) =

 −v′(x)
4
√

v(x)
−v′(x)

4
√

v(x)
v′(x)

4
√

v(x)
v′(x)

4
√

v(x)

 , (38)

and A (x) is given by (26).

B. Coupled hyperbolic system: Transformation II
Applying the state transformations

ζ (x, t) = e−
∫ x

0
v′(r)
4v(r) dr

ζ (x, t), (39)

η(x, t) = e−
∫ x

0
v′(r)
4v(r) dr

η(x, t), (40)

system (33)–(37) is rewritten in the following form

Ż(t) = ϕ (Z(t),ζ (0, t)) (41)
∂tξ (x, t) = A (x)∂xξ (x, t)+B(x)ξ (x, t) (42)

ζ (0, t) = η(0, t) (43)

ζ (L, t) = η(L, t)+2e−
∫ L

0
v′(r)
4v(r) dr√v(L)U(t), (44)

where ξ (x, t) =
[

ζ (x, t), η(x, t)
]T , and A (x) and B(x)

are given by (26).

IV. BACKSTEPPING TRANSFORMATIONS

A. First step backstepping transformation
In this section, we employ a first backstepping transforma-

tion to system (41)–(44) in order to remove the internal PDE
state coupling terms of the two propagating waves as shown
in Fig. 3:

ω(x, t) = ξ (x, t)−
∫ x

0
K(x,s)ξ (s, t)ds, (45)

for all 0 ≤ x ≤ L, t ≥ 0. The gain kernel matrix K(x,s) is
a solution to the kernel equations (21)–(24), where (21) is
defined on {(x,s) : 0 ≤ s ≤ x ≤ L}. Following [39], it can be
verified that (45) has a bounded inverse defined as

ξ (x, t) = ω(x, t)+
∫ x

0
L(x,s)ω(s, t)ds, (46)

for all 0 ≤ x ≤ L, t ≥ 0. Moreover, the inverse gain kernel
matrix

L(x,s) =
[

L11(x,s) L12(x,s)
L21(x,s) L22(x,s)

]
∈ R2×2, (47)

Fig. 2: First-step backstepping transformation removes the
internal coupling terms

is the solution of the well-posed kernel equations written below

∂sL(x,s)A (x))−A (x)∂xL(x,s) = −B(x)L(x,s) (48)
L(x,x)A (x)−A (x)L(x,x) = B(x) (49)

L11(x,0) = L12(x,0) (50)
L21(x,0) = L22(x,0), (51)

where A (x) and B(x) are defined by (26).
Differentiating (45) with respect to time t and space x, it can

be straightforwardly established that system (41)–(44) maps
into the following decoupled PDE/ODE cascaded system

Ż(t) = ϕ (Z(t), ω1(0, t)) (52)
∂tω(x, t) = A (x)∂xω(x, t) (53)
ω2(0, t) = ω1(0, t) (54)

ω1(L, t) = η(L, t)+2e−
∫ L

0
v′(r)
4v(r) dr√v(L)U(t)

−
∫ L

0
K11(L,s)ζ (s, t)ds

−
∫ L

0
K12(L,s)η(s, t)ds, (55)

for 0 ≤ x ≤ L, t ≥ 0, and ω(x, t) = [ω1(x, t),ω2(x, t)]T if the
gain kernel matrix satisfies (21)–(24). The ODE dynamics is
driven by ϕ defined in (7).

B. Second-step backstepping transformation

From a nominal controller κ : Rn→R that globally asymp-
totically stabilizes the original delay-free nonlinear ODE, we
define the following function

µ(χ) = −c1(χ2−κ(χ1))+
∂κ(χ1)

∂ χ1
f (χ1, χ2), (56)

where c1 > 0 is an arbitrary gain constant and χ = [χ1,χ2] ∈
Rn×R. Denote the vector functions p(x, t) and q(x, t) as

p(x, t) = Z(t)+
∫ x

0

ϕ (p(y, t), ω1(y, t))√
v(y)

dy, (57)

where p(x, t) = [p1(x, t), p2(x, t)]T , with the initial condition

p(x,0) = Z(0)+
∫ x

0

ϕ (p(y,0), ω1(y,0))√
v(0)

dy, (58)
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Fig. 3: Second-step backsteping transformation removes the
boundary coupling at x = L, and designs a compensator for
the resulting cascaded system

and

q(x, t) = Z(t)−
∫ x

0

ϕ (q(y, t), ω2(y, t))√
v(y)

dy, (59)

where q(x, t) = [q1(x, t),q2(x, t)]T , with the initial condition

q(x,0) = Z(0)−
∫ x

0
ϕ(q(y,0),ω2(y,0))√

v(0)
dy. (60)

Lemma 1 (Second-Step Backstepping Transform): The fol-
lowing backstepping transformations

ϖ(x, t) = ω1(x, t)−µ(p(x, t)), (61)
λ (x, t) = ω2(x, t)−µ(q(x, t)), (62)

where µ is defined in (56), and p(x, t),q(x, t) are given as (57),
(59), respectively, and U(t) is

U(t) =
e
∫ L

0
v′(s)
4v(s) ds

2
√

v(L)

(
µ(p(L, t))−η(L, t)

+
∫ L

0

(
K11(L,s)ζ (s, t)+K12(L,s)η(s, t)

)
ds
)
, (63)

map system (52)–(55) into the target system

Ż(t) = ϕ (Z(t),ϖ(0, t)+µ(Z(t))) (64)

∂tϖ(x, t) =
√

v(x)∂xϖ(x, t) (65)

∂tλ (x, t) =−
√

v(x)∂xλ (x, t) (66)
λ (0, t) = ϖ(0, t) (67)
ϖ(L, t) = 0. (68)

The schematic of the resulting target system is depicted in Fig.
3.

Proof. It is easy to obtain (64), (67), (68). We will prove
relation (65). Differentiating (57) with respect to t and x, we
get

∂t p(x, t) = ϕ (Z(t), ω1(0, t))

+
∫ x

0

∂pϕ(p(y, t),ω1(y, t))∂t p(y, t)√
v(y)

dy

+
∫ x

0

∂ω1ϕ (p(y, t), ω1(y, t))∂tω1(y, t)√
v(y)

dy, (69)

and√
v(x)∂x p(x, t) =

∫ x

0
∂pϕ(p(y, t),ω1(p(y, t)))∂y p(y, t)dy

+
∫ x

0
∂ω1ϕ (p(y, t), ω1(p(y, t)))∂yω1(y, t)dy

+ϕ (Z(t), ω1(0, t)) , (70)

respectively. Defining H(x, t) = ∂t p(x, t)−
√

v(x)∂x p(x, t), and
combining (69) and (70), and by (53), we arrive at

H(x, t) =
∫ x

0

∂pϕ(p(y, t),ω1(y, t))H(y, t)√
v(y)

dy. (71)

Differentiating (71) with respect to x, we have

∂xH(x, t) =
∂pϕ(p(x, t),ω1(x, t))H(x, t)√

v(x)
, (72)

and H(0, t) = 0, which implies that H(x, t) = 0, for all x ∈
[0,L]. Hence, it is clear that

∂t p(x, t) =
√

v(x)∂x p(x, t). (73)

Taking the time and the spatial derivatives of (61), and from
(53) and (73), we obtain (65). Relation (66) can be deduced
similarly, which completes the proof.

Remark 4: Using (39), it is easy to show that (63) can be
expressed as follows:

U(t) =
e
∫ L

0
v′(r)
4v(r) ds

2
√

v(L)
µ(p(L, t))− 1

2
√

v(L)
η̄(L, t)

+
1

2
√

v(L)

∫ L

0
K11(L,s)ζ̄ (s, t))ds

+
1

2
√

v(L)

∫ L

0
K12(L,s)η̄(s, t)ds, (74)

Substituting (29), (30), and (56) into (74) gives the equivalent
control action U(t) defined in (16). In addition, it can be
deduced that p(x, t) in (57) is equal to [p1(x, t), p2(x, t)]T ,
where p1(x, t), p2(x, t) are given by (17), (18), respectively.

Define the vector functions π(x, t) and ι(x, t) as

π(x, t) = Z(t)+
∫ x

0

ϕ (π(y, t),ϖ(y, t)+µ(π(y, t)))√
v(y)

dy, (75)

where π(x, t) = [π1(x, t),π2(x, t)]T , with the initial condition

π(x,0) = Z(0)+
∫ x

0

ϕ (π(y,0),ϖ(y,0)+µ(π(y,0)))√
v(y)

dy, (76)

and

ι(x, t) = Z(t)−
∫ x

0

ϕ (ι(y, t), λ (y, t)+µ(ι(y, t)))√
v(y)

dy, (77)

where ι(x, t) = [ι1(x, t), ι2(x, t)]T with the initial condition

ι(x,0) = Z(0)−
∫ x

0

ϕ (ι(y,0), λ (y,0)+µ(ι(y,0)))√
v(y)

dy, (78)

where ϖ ,λ , µ are defined in (61), (62), (56), respectively.
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Inverse Backstepping Transforms: The inverse backstep-
ping transformations of ϖ ,λ are defined as

ω1(x, t) = ϖ(x, t)+µ(π(x, t)), (79)
ω2(x, t) = λ (x, t)+µ(ι(x, t)), (80)

where π(x, t), ι(x, t), 0≤ x≤ L, t ≥ 0, are given as (75), (77),
respectively.

The inverse backstepping transformations (79), (80), and
the control law (63) transform the target system (64)–(68)
into system (52)–(55) and the proof can be derived from
straightforward computations.

V. STABILITY ANALYSIS OF THE TARGET SYSTEM

Lemma 2 (Stability of the Target System): Consider system
(64)–(68), under Assumptions 1 and 2, there exists a class
K L function β , such that

|Z(t)|+‖ϖ(t)‖∞ +‖λ (t)‖∞

≤ β (|Z(0)|+‖ϖ(0)‖∞ +‖λ (0)‖∞, t),
(81)

for all t ≥ 0.
Proof. We introduce a new variable z(x, t),x ∈ [−L,L] such

that

z(x, t) =
{

ϖ(x, t), for all x ∈ [0,L],
λ (−x, t), for all x ∈ [−L,0]. (82)

Let Γg,n(t) denote the following norm

Γg,n(t) =
∫ L

−L
e2ng(L+x)z(x, t)2ndx, (83)

where g > 0 is determined later and n is any positive integer.
Using integration by parts, the derivative of Γg,n(t) satisfies

Γ̇g,n(t)≤−
∫ 0

−L
2n

(
g
√

v(−x)− v′(−x)

4n
√

v(−x)

)
× e2ng(L+x)z(x, t)2ndx

−
∫ L

0
2n

(
g
√

v(x)+
v′(x)

4n
√

v(x)

)
e2ng(L+x)z(x, t)2ndx.

(84)

Under Assumption 2, v(x) is continuously differentiable and
positive for all x ∈ [0,L], denote

π0 = sup
x∈[0,L]

v′(x)√
v(x)

, π1 = inf
x∈[0,L]

v′(x)√
v(x)

. (85)

Note n≥ 1, we have

g
√

v(−x)− v′(−x)

4n
√

v(−x)
≥min

{
g
√

υ− π0

4
, g
√

υ

}
(86)

for all x ∈ [−L, 0], and

g
√

v(x)+
v′(x)

4n
√

v(x)
≥min

{
g
√

υ +
π1

4
, g
√

υ

}
, (87)

for all x ∈ [0, L], and υ is given by (5). Choose

g > max
{

π0

4
√

υ
,
−π1

4
√

υ

}
, (88)

we get

Γ̇g,n(t)≤−2nπ2Γg,n(t), for t ≥ 0, (89)

with π2 =min{min
{

g
√

υ− π0
4 , g
√

υ
}
, min

{
g
√

υ + π1
4 , g
√

υ
}
}.

Using Assumption 2, from (89), it is easy to deduce that (81)
holds.

VI. STABILITY OF THE ORIGINAL WAVE PDE/NONLINEAR
ODE CASCADED SYSTEM

To establish stability proof of the closed-loop system (1)–
(4), (16)–(18), we show the boundedness of predictors, first.
Proofs of Lemmas 3–8 are established using systematic devel-
opments already presented in [10] and [13].

Lemma 3 (Bound on Forward Predictor): Under Assump-
tions 1 and 3, there exists a class K∞ function ρ1 such that
the following holds:

sup
0≤x≤L

|p(x, t)| ≤ ρ1(|Z(t)|+‖ω1(t)‖∞). (90)

Lemma 4 (Bound on Backward Predictor): Under Assump-
tions 1 and 4, there exists a class K∞ function ρ2 such that
the following holds:

sup
0≤x≤L

|q(x, t)| ≤ ρ2(|Z(t)|+‖ω2(t)‖∞). (91)

Lemma 5 (Bound on Extended Forward State Predictor):
Under Assumptions 1 and 2, there exists a class K∞ function
ρ3 such that the following holds:

sup
0≤x≤L

|π(x, t)| ≤ ρ3(|Z(t)|+‖ϖ(t)‖∞). (92)

Lemma 6 (Bound on Extended Backward State Predictor):
Under Assumptions 1 and 4, there exists a class K∞ function
ρ4 such that the following holds:

sup
0≤x≤L

|ι(x, t)| ≤ ρ4(|Z(t)|+‖λ (t)‖∞). (93)

Next, we show equivalence of norms of original and target
PDE states in Lemma 7 and Lemma 8.

Lemma 7: (Original PDE State Bounded by Target PDE
State) Under Assumptions 2 and 4, consider system (64)–(68),
and output maps are (79), (80), then there exists a class K∞

function γ2 such that the following holds:

|Z(t)|+‖ω1(t)‖∞ +‖ω2(t)‖∞

≤ γ2(|Z(t)|+‖ϖ(t)‖∞ +‖λ (t)‖∞).
(94)

Lemma 8: (Target PDE State Bounded by Original PDE
State) Under Assumptions 2 and 4, consider system (52)–(55),
and output maps are (61), (62), then there exists a class K∞

function γ3 such that the following holds:

|Z(t)|+‖ϖ(t)‖∞ +‖λ (t)‖∞

≤ γ3(|Z(t)|+‖ω1(t)‖∞ +‖ω2(t)‖∞).
(95)
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Proof of Theorem 1. Using Lemmas 2, 7 and 8, with the
help of (45), (46), we get

|Z(t)|+‖ξ (t)‖∞

≤ |Z(t)|+(1+L)‖ω(t)‖∞

≤ (1+L)γ2(|Z(t)|+‖ϖ(t)‖∞ +‖λ (t)‖∞)
≤ (1+L)γ2(β (|Z(0)|+‖ϖ(0)‖∞ +‖λ (0)‖∞, t))
≤ (1+L)γ2(β (γ3(|Z(0)|+‖ω1(0)‖∞ +‖ω2(0)‖∞), t))
≤ (1+L)γ2(β (γ3(

√
2(|Z(0)|+‖ω(0)‖∞), t))

≤ (1+L)γ2(β (γ3(
√

2(1+K)(|Z(0)|+‖ξ (0)‖∞), t)),
(96)

where L = max
(x,y)∈[0,L]×[0,L]

|L(x,y)|, K = max
(x,y)∈[0,L]×[0,L]

|K(x,y)|.
Using (7), (29)–(32), (39), (40), and (96), we obtain the

following estimate

|X(t)|+ |u(0, t)|+‖∂tu(t)‖∞ +‖∂xu(t)‖∞

≤
√

2|Z(t)|+
√

2
2 (1+ 1√

υ
) 4
√

υ

υ
‖ξ (t)‖∞

≤max{
√

2,
√

2
2 (1+ 1√

υ
) 4
√

υ

υ
}(|Z(t)|+‖ξ (t)‖∞)

≤ (1+L)max{
√

2,
√

2
2 (1+ 1√

υ
) 4
√

υ

υ
}

×γ2(β (γ3(
√

2(1+K)(|Z(0)|+‖ξ (0)‖∞), t))

≤ (1+L)max{
√

2,
√

2
2 (1+ 1√

υ
) 4
√

υ

υ
}

×γ2(β (γ3(
√

2(1+K)(|X(0)|+‖u(0)‖∞ +2 4
√

υ

υ
(1+
√

υ)

×(‖∂tu(0)‖∞ +‖∂xu(0)‖∞)), t)).
(97)

Finally defining a class K∞ function β (s, t) = (1 +

L)max{
√

2,
√

2
2 (1+ 1√

υ
) 4
√

υ

υ
}γ2(β (γ3(

√
2(1+K)+ 2 4

√
υ

υ
(1+

√
υ)s), t)), we get (27).
Following [11], it can be proved that under Assumptions 1–

4 and u(·,0) ∈C1[0,1], ut(·,0) ∈C[0,1], which is compatible
with the feedback law (16)–(18), the closed-loop system
has a unique solution X(t) ∈C1([0,∞),Rn), (u(·, t),ut(·, t)) ∈
C([0,∞),C1[0,L]×C[0,L]).

VII. SIMULATION RESULTS

We consider a cable that is made of dynamic material, and
a load that is the benchmark system modeled as a point mass
M is attached to the lower end of the cable. Small deflections
of the cable denoted u(x, t) obeys the planar motion governed
by (2)–(4), where ∂xu(1, t) of the cable at its upper end serves
as a control input, and v(x) =

√
gρ (1+ sin(x))+Mg is the

force in the cable, and X(t) = [X1, X2, X3]
T is the state of the

load which satisfies

Ẋ1 = X2 +X2
3 (98)

Ẋ2 = X3 (99)
Ẋ3 =−X2−2X3 +u(0, t). (100)

Here, ρ is the material’s density and g is the gravity constant.
Following [40], a nominal design for system (98)–(100) is
given as

κ(X) =−X3− (X1 +2X2 +X3 +0.25X2
2 (101)

+0.25X2
3 )(1+0.5X3).

The control law for system (2)–(4) cascading with (98)–
(100) is given by (16)–(18). A simulation study is performed

Fig. 4: Response of (X1(t), X2(t)) under the proposed control
(solid red line) and with uncompensated control (101) (blue
line), state prediction (p11(L, t), p12(L, t)) (dashdot red line)

Fig. 5: Dynamics of (X3(t),U(t)) under the proposed control
(solid red line) and with uncompensated control (101) (blue
line), state prediction p13(L, t) (dashdot red line)

with L = 1m, M = 1kg, ρ = 2kg/m, and g = 9.81m/s2,
for the initial values of the ODE states given as X1(0) =
0.5, X2(0) =−0.6, X3(0) = 0.7 and ux(x,0) = 0, ut(x,0) = 0.5
for x ∈ [0,1] and the gain parameter c1 = 1. Responses
of the states (X1, X2, X3) together with the predictor states
(p11(L, t), p12(L, t), p13(L, t)) under the proposed control law
and the nominal control action without wave actuator dynam-
ics compensation are shown in Fig. 4–Fig. 5. It is clear that the
designed predictor enables to compute the future values of the
real states and the designed predictor-feedback controller sta-
bilizes the system at the setpoint. However, the uncompensated
control action (101) cannot achieve stabilization of the state
X1 to the desired setpoint and leads to a bounded dynamics as
depicted in Fig.4. The actuator dynamics for the compensated
case is depicted in Fig.6, which confirms the pertinence of the
proposed control law.

VIII. CONCLUSION

We consider boundary control of nonlinear ODE/wave PDE
cascaded systems with spatially-varying propagation speed.
A nonlinear backstepping compensator is designed such that
the closed-loop system is globally asymptotically stable and
the stability proof is established based on a Lyapunov-like
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Fig. 6: Response of wave PDE dynamics under the proposed control

argument. The proposed design is illustrated by the benchmark
system controlled via a cable. The generalization of the result
to actuator dynamics governed by an arbitrary number of
coupled linear hyperbolic PDEs [17], the extension to drilling
systems’ stabilization problems and to the particular case
v(x) = 0 will be considered in our future works.
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