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a b s t r a c t

This paper provides observer-based sampled-data and event-triggered boundary control strategies for
a class of reaction–diffusion PDEs with collocated sensing and Robin actuation. Infinite-dimensional
backstepping design is used as the underlying control approach. It is shown that the continuous-time
output feedback boundary control applied in a sample-and-hold fashion ensures global closed-loop
exponential stability, provided that the sampling period is sufficiently small. Further, robustness to
perturbations of the sampling schedule is guaranteed. For the event-triggered implementation of
the continuous-time controller, a dynamic triggering condition is utilized. The triggering condition
determines the time instants at which the control input needs to be updated. Under the observer-
based event-triggered boundary control, it is shown that there is a minimal dwell-time between two
triggering instants independent of initial conditions. Further, the global exponential convergence of
the closed-loop system to the equilibrium point is established. A simulation example is provided to
validate the theoretical results.

Published by Elsevier Ltd.
1. Introduction

Computer-controlled systems often consist of continuous-time
lants and digital computers that interact via a feedback channel
o achieve specific control objectives. For such systems, periodic
ampling/update of control inputs is sometimes not desirable due
o limitations in the hardware, software, and communication re-
ources (Hespanha, Naghshtabrizi, & Xu, 2007). Therefore, control
trategies that rely on non-uniform sampling schedules, known as
periodic sampled-data control, have been introduced (Fridman,
euret, & Richard, 2004; Karafyllis & Kravaris, 2009; Karafyllis &
rstic, 2011, 2012; Nesic, Teel, & Carnevale, 2009; Pepe, 2016). A
ajor drawback in most of the existing aperiodic sampled-data
ontrol methods is the lack of explicit criteria for selecting appro-
riate sampling schedules required for the controller implemen-
ation. This has led to the development of event-triggered control
trategies (Donkers & Heemels, 2012; Girard, 2015; Heemels,
onkers, & Teel, 2013; Heemels, Johansson, & Tabuada, 2012;
archand, Durand, & Castellanos, 2013; Postoyan, Tabuada, Nešić,

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Rafael
Vazquez under the direction of Editor Miroslav Krstic.
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M. Diagne), iasonkar@central.ntua.gr (I. Karafyllis).
ttps://doi.org/10.1016/j.automatica.2021.110026
005-1098/Published by Elsevier Ltd.
& Anta, 2015; Tabuada, 2007; Tallapragada & Chopra, 2013),
where the instances of control updates are determined by occur-
rences of events that indicate the need for fresh control updates.
Thus, event-triggered control provides a rigorous resource-aware
method of implementing control laws into digital platforms.

Sampled-data control of infinite-dimensional systems has been
studied in works such as Fridman and Blighovsky (2012), Kang
and Fridman (2018), Karafyllis and Krstic (2017, 2018), Loge-
mann, Rebarber, and Townley (2003, 2005), Rebarber and Town-
ley (2006), Selivanov and Fridman (2017) and Wang and Wang
(2019). The major works Logemann et al. (2003), Rebarber and
Townley (2006) provide necessary and sufficient conditions for
periodic sampled-data control of general infinite-dimensional
systems, which have been extended in Logemann et al. (2005)
to incorporate generalized sampling. Sampled-data controllers
for parabolic PDEs using matrix inequalities have been proposed
in Fridman and Blighovsky (2012), Kang and Fridman (2018),
Selivanov and Fridman (2017). Using small-gain arguments, the
authors of Karafyllis and Krstic (2018) obtain results that guaran-
tee closed-loop exponential stability for 1-D parabolic PDEs under
Zero-Order-Hold implementations of continuous-time boundary
feedback designs (emulation). Similar results have been obtained
for 1-D linear transport PDEs with non-local terms in Karafyl-
lis and Krstic (2017). A distributed sampled-data control ap-
proach using a finite number of local piecewise measurements
in space is proposed for semilinear parabolic PDEs in Wang
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nd Wang (2019). Via modal decomposition, the authors of Katz
nd Fridman (2021) present sampled-data control approaches
nder boundary or distributed sensing together with non-local
ctuation, or Dirichlet actuation with distributed sensing for
eaction–diffusion systems.

Several recent works that employ event-triggered bound-
ry control strategies on infinite-dimensional systems can be
ound in Diagne and Karafyllis (2021), Espitia (2020), Espitia,
irard, Marchand, and Prieur (2016, 2018), Espitia, Karafyllis,
nd Krstic (2021), Katz, Fridman, and Selivanov (2020), Selivanov
nd Fridman (2016), Wang (2019). In general, event-triggered
ontrol includes two main components: a feedback control law
hat stabilizes the system and an event-triggered mechanism
hat determines when the control value has to be updated. All
vent-triggered control designs should be free of the Zeno phe-
omenon (Heemels et al., 2012); otherwise, the design would be
nfeasible for digital implementation due to the triggering of an
nfinite number of control updates over a finite period. Zeno-free
ehavior is often ensured by showing a guaranteed lower bound
or the time between two adjacent events, known as minimal
well-time.
Both Sampled-data and event-triggered boundary control of

inear parabolic PDEs with boundary sensing only are pretty
hallenging. The actuation type and the sensor configuration have
o be carefully selected to obtain successful control designs. A
eneral robustness result that guarantees closed-loop exponential
tability under the emulation of continuous-time boundary out-
ut feedback control designs with a sufficiently small sampling
eriod (not necessarily periodic) is missing for sampled-data con-
rol with boundary sensing and actuation. Sampled-data back-
tepping with Neumann actuation leads to an undesirable trace
erm that arises from the difference between the continuous-
ime feedback and the applied control action (the input holding
rror), for which it is impossible to obtain a useful bound on
ts rate of convergence. Furthermore, sampled-data backstepping
oundary output feedback requires a bound for the local output
aking Dirichlet type sensing is the only viable option. The
irichlet output can be bounded by using the H1-norm estimate
f the observer error target system. However, such H1-norm
stimates only exist when the boundary condition at the uncon-
rolled end is Dirichlet (irrespective of the boundary conditions at
he controlled end) (Karafyllis & Krstic, 2019). Therefore, bound-
ry sensing anti-collocated with the actuation is not conducive
or sampled-data backstepping control.

Under event-triggered boundary control of general parabolic
DEs with boundary observation, the possibility of avoiding the
eno phenomenon is unknown. The actuation type is critical
s both Dirichlet and Neumann actuation under backstepping
ose a severe impediment in proving the existence of a minimal
well-time and hence well-posedness and convergence results
ue to unbounded local terms. Using the modal decomposition
pproach, the authors (Katz et al., 2020) present an observer-
ased event-triggered boundary control of a reaction–diffusion
quation with anti-collocated sensing and Robin boundary ac-
uation in the presence of input and output time-varying delay.
n Rathnayake, Diagne, Espitia, and Karafyllis (2021), an event-
riggered backstepping boundary control strategy for reaction–
iffusion PDEs with anti-collocated sensing and Robin boundary
ctuation is proposed. The authors of Chen, Zhuang, Chen, and Cui
2017) propose a continuous-time backstepping-based boundary
eedback control for a fractional reaction–diffusion system with
obin boundary conditions.
This paper considers Robin boundary control of reaction–

iffusion PDEs with collocated sensing and actuation using the
nfinite-dimensional backstepping approach. We prove that there
s a sufficiently small sampling period such that the global ex-
onential stability of the closed-loop system is preserved under
2

the emulation of the continuous-time observer-based controller.
We also derive conditions for the (conservative) upper bounds
of the sampling period and establish robustness to perturbations
of the sampling schedule. Moreover, for the controller’s practical
implementation, we propose an event-triggered control strategy
as in Rathnayake et al. (2021) using a dynamic event-triggering
condition under which we show that the Zeno phenomenon
cannot occur. We prove the global exponential convergence of
the closed-loop system subject to the proposed event-triggered
control.

The paper is organized as follows. Section 2 introduces the
class of linear reaction–diffusion system and the continuous-
time output feedback boundary control. Section 3 presents the
observer-based sampled-data boundary control. In Section 4, we
introduce the observer-based event-triggered boundary control.
We provide a numerical example in Section 5 to illustrate the
results and conclude the paper in Section 6.

Notation. R+ is the nonnegative real line whereas N is the set
of natural numbers including zero. By C0(A;Ω), we denote the
class of continuous functions on A ⊆ Rn, which takes values
in Ω ⊆ R. By Ck(A;Ω), where k ≥ 1, we denote the class
f continuous functions on A, which takes values in Ω and has
ontinuous derivatives of order k. L2(0, 1) denotes the equiva-
ence class of Lebesgue measurable functions f : [0, 1] → R
such that ∥f ∥ =

(∫ 1
0 f 2(x)dx

)1/2
< ∞. H1(0, 1) denotes the

quivalence class of Lebesgue measurable functions f : [0, 1] →

such that
∫ 1
0 f 2(x)dx +

∫ 1
0 f 2x (x)dx < ∞. H2(0, 1) denotes the

obolev space of continuously differentiable functions on [0, 1]
ith measurable, square integrable second derivative. Let u :

0, 1] ×R+ → R be given. u[t] denotes the profile of u at certain
≥ 0, i.e.,

(
u[t]

)
(x) = u(x, t), for all x ∈ [0, 1]. For an interval I ⊆

+, the space C0
(
I; L2(0, 1)

)
is the space of continuous mappings

∋ t → u[t] ∈ L2(0, 1). Im(·), and Jm(·) with m being an integer
espectively denote the modified Bessel and (nonmodified) Bessel
unctions of the first kind.

. Observer-based backstepping boundary control and emula-
ion

Let us consider the following 1-D reaction–diffusion system
ith constant coefficients:

ut (x, t) = εuxx(x, t) + λu(x, t), (1a)

u(0, t) = 0, (1b)

x(1, t) + qu(1, t) = U(t), (1c)

nd the initial condition u[0] ∈ H1(0, 1), where ε, λ > 0, u :

0, 1] × [0,∞) → R is the system state, and U(t) is the control
nput.

ssumption 1. The plant’s parameters q, λ, and ε satisfy the
ollowing inequality:

> λ/2ε.

emark 1. Assumption 1 is required to avoid a trace term for
hich it is impossible to obtain a useful bound on its rate of
hange. In order to overcome this, it is required that q − λ/2ε >
. Furthermore, It should be mentioned that an eigenfunction
xpansion of the solution of (1) with U(t) = 0 (zero input) shows
hat the system is unstable when λ > επ2, no matter what q > 0
s.

We propose an observer for the system (1) using u(1, t) as the
vailable measurement/output. Note that the output is collocated
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ith the input. The observer consists of a copy of the system (1)
ith output injection terms, which is stated as follows:

ût (x, t) = εûxx(x, t) + λû(x, t)

+ p1(x)
(
u(1, t) − û(1, t)

)
, (2a)

û(0, t) = 0, (2b)

ûx(1, t) + qû(1, t) = U(t) + p10
(
u(1, t) − û(1, t)

)
, (2c)

and the initial condition û[0] ∈ H1(0, 1). Here, the function p1(x)
and the constant p10 are observer gains to be determined.

Remark 2. The restriction that the initial conditions should sat-
isfy u[0], û[0] ∈ H1(0, 1) is only required for sampled-data con-
trol. For event-triggered control, it is sufficient that u[0], û[0] ∈

L2(0, 1).

Let us denote the observer error by ũ(x, t), which is defined as

ũ(x, t) := u(x, t) − û(x, t). (3)

By subtracting (2) from (1), one can see that ũ(x, t) satisfies the
following PDE:

ũt (x, t) = εũxx(x, t) + λũ(x, t) − p1(x)ũ(1, t), (4a)

ũ(0, t) = 0, (4b)

ũx(1, t) + qũ(1, t) = −p10ũ(1, t). (4c)

Proposition 1. Under the invertible backstepping transformation

ũ(x, t) = w̃(x, t) −

∫ 1

x
P(x, y)w̃(y, t)dy, (5)

where

P(x, y) = −
λ

ε
x
I1
(√
λ(y2 − x2)/ε

)√
λ(y2 − x2)/ε

, (6)

for 0 ≤ x ≤ y ≤ 1, the observer error system (4) with the gains
p1(x) and p0 chosen as

p1(x) = −εqP(x, 1) − εPy(x, 1), p10 = −P(1, 1) =
λ

2ε
, (7)

gets transformed to the following observer error target system

w̃t (x, t) = εw̃xx(x, t), (8a)

w̃(0, t) = 0, (8b)

˜ x(1, t) = −qw̃(1, t), (8c)

hich is globally L2-exponentially stable for any q > 0.

roof. The proof is very similar to that of Proposition 1 in Rath-
ayake et al. (2021) and hence omitted. ■

The inverse transformation of (5) can be shown to be as
ollows:

˜ (x, t) = ũ(x, t) +

∫ 1

x
Q (x, y)ũ(y, t)dy, (9)

where Q (x, y) is

Q (x, y) = −
λ

ε
x
J1
(√
λ(y2 − x2)/ε

)√
λ(y2 − x2)/ε

, (10)

or 0 ≤ x ≤ y ≤ 1.

roposition 2. The invertible backstepping transformation

ˆ (x, t) = û(x, t) −

∫ x

K (x, y)û(y, t)dy, (11)

0

u

3

where

K (x, y) = −
λ

ε
y
I1
(√
λ(x2 − y2)/ε

)√
λ(x2 − y2)/ε

, (12)

or 0 ≤ y ≤ x ≤ 1, and a control law U(t) chosen as

(t) =

∫ 1

0

(
rK (1, y) + Kx(1, y)

)
û(y, t)dy, (13)

ap the system (2) with the gains p1(x) and p10 chosen as in (7),
nto the following target system:

ŵt (x, t) = εŵxx(x, t) + g(x)w̃(1, t), (14a)

ŵ(0, t) = 0, (14b)

ˆ x(1, t) = −rŵ(1, t) +
λ

2ε
w̃(1, t). (14c)

with

g(x) = p1(x) −

∫ x

0
K (x, y)p1(y)dy, (15)

nd

= q −
λ

2ε
. (16)

Proof. The proof is very similar to that of Proposition 2 in Rath-
nayake et al. (2021) and hence omitted. ■

The inverse transformation of (11) can be shown to be as
follows:

û(x, t) = ŵ(x, t) +

∫ x

0
L(x, y)ŵ(y, t)dy, (17)

here

(x, y) = −
λ

ε
y
J1
(√
λ(x2 − y2)/ε

)√
λ(x2 − y2)/ε

, (18)

or 0 ≤ y ≤ x ≤ 1.

roposition 3. Subject to Assumption 1, the closed-loop sys-
em which consists of the plant (1) and the observer (2) with the
ontinuous-time control law (13), is globally exponentially stable in
2-sense.

roof. The proof is very similar to that of Proposition 3 in Rath-
ayake et al. (2021) and hence omitted. ■

.1. Emulation of the observer-based backstepping boundary control

We aim to stabilize the closed-loop system containing the
lant (1) and the observer (2) while sampling the continuous-
ime controller U(t) given by (13) at a certain sequence of time
nstants (tj)j∈N. These sampling instants will be fully characterized
ater on for both sampled-data control (via a maximum upper
iameter of the sampling schedule) and event-triggered control
via an event trigger). The control input is held constant between
wo consecutive time instants. Therefore, we define the control
nput for t ∈ [tj, tj+1), j ∈ N as

j := U(tj) =

∫ 1

0
k(y)û(y, tj)dy, (19)

here

(y) := rK (1, y) + Kx(1, y). (20)

ccordingly, the boundary conditions (1c) and (2c) are modified,
espectively, as follows:
x(1, t) + qu(1, t) = Uj, (21)
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ˆx(1, t) + qû(1, t) = Uj +
λ

2ε
ũ(1, t). (22)

he deviation between the continuous-time control law and its
ampled counterpart, referred to as the input holding error, is
efined as follows:

(t) :=

∫ 1

0
k(y)

(
û(y, tj) − û(y, t)

)
dy, (23)

for t ∈ [tj, tj+1), j ∈ N. It can be shown that the backstepping
transformation (11), applied on the system (2a), (2b), (22) be-
tween tj and tj+1, j ∈ N, yields the following target system, valid
for t ∈ [tj, tj+1), j ∈ N:

ŵt (x, t) = εŵxx(x, t) + g(x)w̃(1, t), (24a)

ŵ(0, t) = 0, (24b)

ŵx(1, t) = −rŵ(1, t) + d(t) +
λ

2ε
w̃(1, t), (24c)

here g(x) and r are given by (15) and (16), respectively.
It is straightforward to see that the observer error system ũ for

∈ [tj, tj+1), j ∈ N under the modified boundary conditions (21)
nd (22) will still be the same as (4). Therefore, the application of
he backstepping transformation (5) on ũ between tj and tj+1, j ∈

N yields the following observer error target system

w̃t (x, t) = εw̃xx(x, t), (25a)

w̃(0, t) = 0, (25b)

w̃x(1, t) = −qw̃(1, t), (25c)

alid for t ≥ 0.

2.2. Well-posedness issues

Proposition 4. For given initial data u[tj], û[tj] ∈ L2(0, 1), there
xist unique mappings u, û ∈ C0([tj, tj+1]; L2(0, 1)) ∩ C1((tj, tj+1) ×

[0, 1]) with u[t], û[t] ∈ C2([0, 1]) which satisfy (1b), (2b), (19)–
(22) for t ∈ (tj, tj+1] and (1a), (2a) for t ∈ (tj, tj+1], x ∈

(0, 1).

Proof. The proof is very similar to that of Proposition 4 in Rath-
nayake et al. (2021) and hence omitted. ■

Corollary 1. Let {tj ≥ 0, j = 0, 1, 2, . . .} be an increasing sequence
of sampling times with t0 = 0, limj→+∞(tj) = +∞. Then for every
given initial data u[0], û[0] ∈ L2(0, 1), there exist unique mappings
u, û ∈ C0(R+; L2(0, 1)) ∩ C1(I × [0, 1]) with u[t], û[t] ∈ C2([0, 1])
which satisfy (1b), (2b), (19)–(22) for all t > 0 and (1a), (2a) for all
t > 0, x ∈ (0, 1), where I = R+\{tj ≥ 0, j ∈ N}.

Proof. This is a straightforward consequence of Proposition 4
and Theorem 4.10 in Karafyllis and Krstic (2019). The solu-
tions are constructed iteratively between consecutive triggering
times. ■

Remark 3. Note that when u[0], û[0] ∈ H1(0, 1), it follows that
u[0], û[0] ∈ L2(0, 1). Thus, the same existence and uniqueness
results presented in Corollary 1 hold when u[0], û[0] ∈ H1(0, 1).

3. Observer-based sampled-data boundary control

In this section, we show the closed-loop exponential stability
for the closed-loop system (1a), (1b), (2a), (2b), (19)–(22) under
arbitrary sampling schedules of sufficiently small sampling pe-
riod. The structure of the closed-loop system consisting of the
plant and the observer-based controller is illustrated in Fig. 1. We
 t

4

Fig. 1. Sampled-data observer-based closed-loop system.

resent the main result in Theorem 1 and state several important
stimates in Lemmas 1–3, which are required in proving Theo-
em 1. Below are some definitions that we frequently use in this
ection.

efinition 1. For ω ∈ R, θ > 0, consider the Sturm–Liouville
SL) operator ωθ G : Dθ → L2(0, 1) defined as

ω
θ Gfθ )(x) := −εf ′′

θ (x) − ωfθ (x), (26)

or all fθ ∈ Dθ and x ∈ (0, 1) where Dθ ⊆ H2(0, 1) is given by

θ := {fθ ∈ H2(0, 1)
⏐⏐fθ (0) = f ′

θ (1) + θ fθ (1) = 0}. (27)

he eigenfunctions φθ,n(x), n = 1, 2, . . . of the SL operator ω
θ G

defined by (26) and (27) are

φθ,n(x) =

(
2θ

θ + cos2(νθ,n)

) 1
2

sin(νθ,nx), (28)

where νθ,n > 0, n = 1, 2, . . . satisfies

νθ,n cot(νθ,n) = −θ. (29)

The corresponding eigenvalues ωθ µn, n = 1, 2, . . . are given by

ω
θ µn = εν2θ,n − ω. (30)

The eigenfunctions φθ,n(x), n = 1, 2, . . . satisfy φθ,n(x) ∈ Dθ ,
(ωθ Gφθ,n)(x) =

ω
θ µnφθ,n(x) and form an orthonormal basis of

L2(0, 1). Furthermore, the eigenvalues form an infinite, increasing
sequence ω

θ µ1 <
ω
θ µ2 · · · < ω

θ µn · · · with limn→+∞(ωθ µn) = +∞.

Definition 2. Consider the Sturm–Liouville (SL) operator G̃ :

D̃ → L2(0, 1) is defined as

(G̃f̃ )(x) := −εf̃ ′′(x) + 2εqf̃ (x), (31)

for all f̃ ∈ D̃ and x ∈ (0, 1) where D̃ ⊆ H2(0, 1) is given by

D̃ := {f̃ ∈ H2(0, 1)
⏐⏐f̃ ′(0) = f̃ (1) = 0}. (32)

The eigenfunctions φ̃n(x), n = 1, 2, . . . of the SL operator G̃
defined by (31) and (32) are

φ̃n(x) =
√
2 cos

(
(n −

1
2
)πx

)
, (33)

with the corresponding eigenvalues µ̃n > 0, n = 1, 2, . . . given
by

µ̃n = ε
(
n −

1
2

)2
π2

+ 2εq, (34)

such that φ̃n(x) ∈ D̃, (G̃φ̃n)(x) = µ̃nφ̃n(x), and φ̃n(x), n = 1, 2, . . .
orm an orthonormal basis of L2(0, 1). Furthermore, the eigenval-
es form an infinite, increasing sequence 0 < µ̃1 < µ̃2 · · · <

˜ n · · · with limn→+∞(µ̃n) = +∞.

emma 1. For every w̃[0] ∈ H1(0, 1), the unique solution w̃ ∈
0(R+; L2(0, 1)) obeying (25b), (25c) for all t > 0 and (25a) for all
> 0, x ∈ (0, 1), satisfy the following estimates for all q > 0 and
≥ 0



B. Rathnayake, M. Diagne and I. Karafyllis Automatica 137 (2022) 110026

∥

H
G
ν

P
K
(

L
w
t
w

w

L

h

f

k

T
(

P

d

f

d

f
(
o

d

A
h
−

(

d

f
λ

w̃x[t]∥ ≤
(
∥w̃x[0]∥ + M1∥w̃[0]∥

)
e−σ1t , (35)

∥w̃[t]∥ ≤ ∥w̃[0]∥e−σ1t , (36)

where

M1 = 2q +
2εq2

µ̃1 − σ1
and σ1 ∈

(
0,min(µ̃1,

0
qµ1)

)
. (37)

ere µ̃1 =
επ2

4 + 2εq is the smallest eigenvalue of the SL operator
˜ : D̃ → L2(0, 1) defined in Definition 2. 0

qµ1 = εν2q,1, where
q,1 ∈ (π/2, π ) satisfies (29) with θ = q, is the smallest eigenvalue

of a SL operator 0
qG : Dq → L2(0, 1) befitting Definition 1.

roof. By the straightforward application of Theorem 5.8 in
arafyllis and Krstic (2019), we can obtain the estimates (35)–
37). ■

emma 2. For every increasing sequence {tj ≥ 0, j = 1, 2, . . .}
ith t0 = 0, limj→+∞(tj) = +∞ and for every ŵ[0] ∈ L2(0, 1),
he unique mapping ŵ ∈ C0(R+; L2(0, 1)) ∩ C1(I × [0, 1]) with
ˆ [t] ∈ C2([0, 1]) obeying (24b), (24c) for all t > 0 and (24a) for
all t > 0, x ∈ (0, 1), where I = R+\{tj ≥ 0, j ∈ N}, satisfies the
following estimate for all r > 0 and all t ≥ 0

∥ŵ[t]∥ ≤∥ŵ[0]∥e−σ2t + C1 sup
0≤s≤t

(
|d(s)|e−σ2(t−s)

)
+ C2 sup

0≤s≤t

(
|w̃(1, s)|e−σ2(t−s)

)
,

(38)

where

σ2 ∈ (0, 0rµ1), (39)

C1 =

0
rµ1

√
3(1 + r)(0rµ1 − σ2)

, (40)

C2 =

0
rµ1λ+ 2

√
3ε(1 + r)∥g∥

2
√
3ε(1 + r)(0rµ1 − σ2)

. (41)

Here 0
rµ1 = εν2r,1, where νr,1 ∈ (π/2, π ) satisfies (29) with θ = r, is

the smallest eigenvalue of a SL operator 0
rG : Dr → L2(0, 1) befitting

Definition 1.

Proof. For every increasing sequence {tj ≥ 0, j = 1, 2, . . .} with
t0 = 0, limj→+∞(tj) = +∞ and for every ŵ[0] ∈ L2(0, 1),
the existence/uniqueness of the mapping ŵ ∈ C0(R+; L2(0, 1)) ∩

C1(I × [0, 1]) with ŵ[t] ∈ C2([0, 1]) satisfying (24b), (24c) for all
t > 0 and (24a) for all t > 0, x ∈ (0, 1), where I = R+\{tj ≥ 0, j ∈

N} is guaranteed by Corollary 1 due to the transformation (11).
Furthermore, we have that

∫ 1
0 w̃x(x, t)dx = w̃(1, t) as w̃(0, t) = 0.

Lemma 1 establishes the boundedness of ∥w̃x[t]∥ which in turn
ensures the boundedness of |w̃(1, t)|. Therefore, by the straight-
forward application of Theorem 5.3 in Karafyllis and Krstic (2019),
we can obtain the estimate (38)–(41). ■

Lemma 3. Consider the SL operator λqG : Dq → L2(0, 1) befitting
Definition 1 whose eigenfunctions φq,n and the corresponding eigen-
values λqµn respectively satisfy (28) and (30) with θ = q and ω = λ

for n = 1, 2, . . .. Then, for any T > 0 such that supj≥0(tj+1− tj) ≤ T
with t0 = 0 and limj→+∞(tj) = +∞, the following estimate holds

for all t ≥ 0 q

5

|d(t)|eσ t

≤ L̃TeσT
N∑

n=1

(
ε∥k∥

⏐⏐knφq,n(1)
⏐⏐ + |

λ
qµnkn|

)
sup
0≤s≤t

(
∥ŵ[s]∥eσ s

)
+ L̃∥k − h∥

(
eσT + 1

)
sup
0≤s≤t

(
∥ŵ[s]∥eσ s

)
+

TeσT
√
2

N∑
n=1

(λ
2
|knφq,n(1)| + ∥p1∥|kn|

)
sup
0≤s≤t

(∥w̃[s]∥eσ s)

+
TeσT
√
2

N∑
n=1

(λ
2
|knφq,n(1)| + ∥p1∥|kn|

)
sup
0≤s≤t

(∥w̃x[s]∥eσ s),

(42)

here d(t) is the input holding error given by (23), N ≥ 1, σ > 0

˜ := 1 +

(∫ 1

0

∫ x

0
L2(x, y)dydx

)1/2
, (43)

(x) :=

N∑
n=1

knφq,n(x), (44)

or all x ∈ [0, 1], and

n :=

∫ 1

0
k(y)φq,n(y)dy. (45)

he functions p1(x), L(x, y), and k(y) are given by (7), (18), and
20), respectively.

roof. Let us define

¯(t) :=

∫ 1

0
h(y)

(
û(y, tj) − û(y, t)

)
dy, (46)

or t ∈ [tj, tj+1), j ∈ N. The definitions (23) and (46) imply that

(t) = d̄(t) +

∫ 1

0

(
k(y) − h(y)

)(
û(y, tj) − û(y, t)

)
dy, (47)

or t ∈ [tj, tj+1), j ∈ N. Differentiating (46) w.r.t time in t ∈

tj, tj+1), j ∈ N, using (2a), and integrating by parts twice, we can
btain that

˙̄(t) = −

∫ 1

0
h(y)ût (y, t)dy

= −λ

∫ 1

0
h(y)û(y, t)dy −

∫ 1

0
h(y)p1(y)dyũ(1, t)

− εh(1)ûx(1, t) + εh(0)ûx(0, t) + εh′(1)û(1, t)

− εh′(0)û(0, t) − ε

∫ 1

0
h′′(y)û(y, t)dy,

(48)

s φq,n ∈ Dq for all n = 1, 2, . . ., it follows from (44) that
(x) ∈ Dq. Thus, from Definition 1, we have that (λqGh)(x) =

εh′′(x)−λh(x) and h(0) = h′(1)+qh(1) = 0. Therefore, recalling
22) and (2b), we can obtain that

˙̄(t) = − εh(1)U(tj) +

∫ 1

0
(λqGh)(y)û(y, t)dy

−
λ

2
h(1)ũ(1, t) −

∫ 1

0
h(y)p1(y)dyũ(1, t),

(49)

or t ∈ (tj, tj+1), j ∈ N. Using (19), recalling that (λqGφq,n)(x) =

µ φ (x) from Definition 1, and using (44), we can rewrite (49)
n q,n
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∥
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˙̄(t) = −ε

N∑
n=1

knφq,n(1)
∫ 1

0
k(y)û(y, tj)dy

+

N∑
n=1

λ
qµnkn

∫ 1

0
φq,n(y)û(y, t)dy

−

N∑
n=1

(λ
2
knφq,n(1) + kn

∫ 1

0
φq,n(y)p1(y)dy

)
ũ(1, t),

(50)

or t ∈ (tj, tj+1), j ∈ N. Further, using Cauchy–Schwarz inequality
and noting ∥φq,n∥ = 1 from Definition 1, we can show that

|
˙̄d(t)| ≤ε∥k∥∥û[tj]∥

N∑
n=1

⏐⏐knφq,n(1)
⏐⏐ + ∥û[t]∥

N∑
n=1

|
λ
qµnkn|

+ |ũ(1, t)|
N∑

n=1

(λ
2
|knφq,n(1)| + ∥p1∥|kn|

)
,

(51)

or t ∈ (tj, tj+1), j ∈ N. Therefore, for a T > 0 such that
upj≥0(tj+1 − tj) ≤ T , let us integrate (51) in t ∈ [tj, tj+1), j ∈ N.
hen, noting d̄(tj) = 0 from (46), we get

d̄(t)|

≤ Tε∥k∥∥û[tj]∥
N∑

n=1

⏐⏐knφq,n(1)
⏐⏐ + T sup

tj≤s≤t
(∥û[s]∥)

N∑
n=1

|
λ
qµnkn|

+ T sup
tj≤s≤t

(|ũ(1, s)|)
N∑

n=1

(λ
2
|knφq,n(1)| + ∥p1∥|kn|

)
,

(52)

for t ∈ [tj, tj+1), j ∈ N. Furthermore, using (52) along with the
fact that supj≥0(tj+1 − tj) ≤ T , we can show

|d̄(t)|eσ t

≤ TeσT
N∑

n=1

(
ε∥k∥

⏐⏐knφq,n(1)
⏐⏐ + |knλqµn|

)
sup
0≤s≤t

(
∥û[s]∥eσ s

)
+ TeσT

N∑
n=1

(λ
2
|knφq,n(1)| + ∥p1∥|kn|

)
sup
0≤s≤t

(|ũ(1, s)|eσ s),

(53)

or any σ > 0. Thus, we can show recalling (47) that

d(t)|eσ t

≤ TeσT
N∑

n=1

(
ε∥k∥

⏐⏐knφq,n(1)
⏐⏐ + |

λ
qµnkn|

)
sup
0≤s≤t

(
∥û[s]∥eσ s

)
+ TeσT

N∑
n=1

(λ
2
|knφq,n(1)| + ∥p1∥|kn|

)
sup
0≤s≤t

(|ũ(1, s)|eσ s)

+ ∥k − h∥∥û[tj]∥eσ t + ∥k − h∥∥û[t]∥eσ t ,

(54)

or t ∈ [tj, tj+1), j ∈ N. Using Cauchy–Schwarz inequality and (17),
we can obtain that ∥û[t]∥ ≤ L̃∥ŵ[t]∥ where L̃ is given by (43).
Furthermore, it follows from (5) that w̃(1, t) = ũ(1, t). Therefore,
using (54) and noting the fact that supj≥0(tj+1 − tj) ≤ T , we get

|d(t)|eσ t

≤ L̃TeσT
N∑

n=1

(
ε∥k∥

⏐⏐knφq,n(1)
⏐⏐ + |

λ
qµnkn|

)
sup
0≤s≤t

(
∥ŵ[s]∥eσ s

)
+ L̃∥k − h∥

(
eσT + 1

)
sup
0≤s≤t

(
∥ŵ[s]∥eσ s

)
+ TeσT

N∑(λ
2
|knφq,n(1)| + ∥p1∥|kn|

)
sup (|w̃(1, s)|eσ s),

(55)
n=1 0≤s≤t ∥

6

or all t ≥ 0. But, using Agmon’s and Young’s inequalities along
ith the fact that w̃(0, t) = 0, we can obtain that

w̃(1, t)| ≤
1

√
2
∥w̃[t]∥ +

1
√
2
∥w̃x[t]∥, (56)

or all t ≥ 0. Thus, the estimate (42) directly follows from (55)
nd (56). ■

With Lemmas 1–3 at hand, we are now in position to prove the
ollowing result, which shows that the observer-based boundary
ampled-data feedback control law obtained by the emulation of
he continuous-time observer-based backstepping design works.

heorem 1. There exist constants σ , T ∗ > 0, M := M(T ∗) > 0,
and increasing sequences {tj ≥ 0, j = 1, 2, . . .} with t0 = 0,
supj≥0(tj+1−tj) ≤ T ∗, and limj→+∞(tj) = +∞ such that, for every
[0], û[0] ∈ H1(0, 1) and subject to Assumption 1 and the controller
19), (20), the closed-loop system consisting of the unique mappings
, û ∈ C0(R+; L2(0, 1)) ∩ C1(I × [0, 1]) with u[t], û[t] ∈ C2([0, 1])
beying (1b), (2b), (21), (22) for all t > 0 and (1a), (2a) for all
> 0, x ∈ (0, 1), where I = R+\{tj ≥ 0, j ∈ N}, satisfy the following
stimate
û[t]∥ + ∥ũ[t]∥ + ∥ũx[t]∥

≤ M(T ∗)
(
∥û[0]∥ + ∥ũ[0]∥ + ∥ũx[0]∥

)
e−σ t ,

(57)

or all t ≥ 0. Here ũ[t] = u[t] − û[t]. In other words, the closed-
oop system is globally exponentially stable in the sense of the norm
û[t]∥ + ∥ũ[t]∥ + ∥ũx[t]∥.

roof. Let T ∗ > 0 be a constant to be selected. Furthermore,
et an increasing sequence {tj ≥ 0, j = 1, 2, . . .} with t0 =

, supj≥0(tj+1 − tj) ≤ T ∗, limj→+∞(tj) = +∞ and u[0], û[0] ∈
1(0, 1) be given. Then the existence/uniqueness of the mappings
, û ∈ C0(R+; L2(0, 1)) ∩ C1(I × [0, 1]) with u[t], û[t] ∈ C2([0, 1])
atisfying (1b), (2b), (19)–(22) for all t > 0 and (1a), (2a) for all
> 0, x ∈ (0, 1) is guaranteed by Corollary 1 and Remark 3.
Before proceeding with the proof of the exponential stability

f the closed-loop system, we present several definitions. Let us
efine

˜ := 1 +

(∫ 1

0

∫ 1

x
P2(x, y)dydx

)1/2
, (58)

˜ := 1 +

(∫ 1

0

∫ 1

x
Q 2(x, y)dydx

)1/2
, (59)

˜ := 1 +

(∫ 1

0

∫ x

0
K 2(x, y)dydx

)1/2
, (60)

here P(x, y),Q (x, y), and K (x, y) are given by (6), (10), and (12),
espectively, and define

:= min{σ1, σ2}, (61)

here σ1 and σ2 are defined in (37) and (39), respectively. Let us
elect N ≥ 1 in (44) sufficiently large so that

C1L̃∥k − h∥ < 1, (62)

here C1 and L̃ are given by (40) and (43), respectively.
Noting that σ2 ≥ σ from (61) and using (56), we can obtain

rom Lemma 2 that

ŵ[t]∥eσ t ≤ ∥ŵ[0]∥ + C1 sup
0≤s≤t

(
|d(s)|eσ s

)
+

C2
√
2

sup
0≤s≤t

(
∥w̃[s]∥eσ s

)
+

C2
√
2

sup
0≤s≤t

(
∥w̃x[s]∥eσ s

)
,

(63)

or all t ≥ 0. Note that above we have used the fact sup0≤s≤t
|d(s)|e−σ2(t−s)

)
≤ sup0≤s≤t

(
|d(s)|e−σ (t−s)

)
. Similarly, from

emma 1, we can obtain

w̃ [t]∥eσ t ≤ ∥w̃ [0]∥ + M∥w̃[0]∥, (64)
x x
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w̃[t]∥eσ t ≤ ∥w̃[0]∥, (65)

for all t ≥ 0 as σ1 ≥ σ . Therefore, using (64) and (65), we get
from (63) that

∥ŵ[t]∥eσ t ≤∥ŵ[0]∥ +
C2
√
2
(M + 1) ∥ w̃[0]|

+
C2
√
2
∥w̃x[0]∥ + C1 sup

0≤s≤t

(
|d(s)|eσ s

), (66)

for all t ≥ 0. By summing (64), (65), (66) together, we can derive
the following estimate:

sup
0≤s≤t

(∥ŵ[s]∥eσ s) + sup
0≤s≤t

(∥w̃[s]∥eσ s) + sup
0≤s≤t

(∥w̃x[s]∥eσ s)

≤ ∥ŵ[0]∥ +

( C2
√
2

+ 1
)
(M + 1)∥w̃[0]∥ +

( C2
√
2

+ 1
)
∥w̃x[0]∥

+ C1 sup
0≤s≤t

(
|d(s)|eσ s

)
.

(67)

herefore, using (42) and (67), we can show have that

1(T ) sup
0≤s≤t

(∥ŵ[s]∥eσ s) + γ2(T ) sup
0≤s≤t

(∥w̃[s]∥eσ s)

+ γ2(T ) sup
0≤s≤t

(∥w̃x[s]∥eσ s)

≤ ∥ŵ[0]∥ +

( C2
√
2

+ 1
)
(M + 1)∥w̃[0]∥ +

( C2
√
2

+ 1
)
∥w̃x[0]∥,

(68)

where

γ1(T ) =1 − C1L̃TeσT
N∑

n=1

(
ε∥k∥

⏐⏐knφq,n(1)
⏐⏐ + |

λ
qµnkn|

)
− C1L̃∥k − h∥

(
eσT + 1

)
,

(69)

γ2(T ) = 1 −
C1T
√
2
eσT

N∑
n=1

(λ
2
|knφq,n(1)| + ∥p1∥|kn|

)
. (70)

A Sampling Diameter T ∗ should be chosen from the set

T ∗
= {T ∗ > 0|γ1(T ∗) > 0 ∧ γ2(T ∗) > 0}. (71)

The existence of such T ∗ is guaranteed. This can be shown as
follows. We have that γ1(0) = 1 − 2C1L̃∥k − h∥ > 0 as N ≥ 1 is
chosen to satisfy (62). We also have that γ2(0) = 1. Furthermore,
it is easy to observe that γ1(T ) and γ2(T ) are both continuous in
T . Therefore, (71) cannot be a null set.

Let Ξ (T ∗) be defined as

Ξ (T ∗) := min{γ1(T ∗), γ2(T ∗)} > 0. (72)

hen, we can obtain from (68) that
ŵ[t]∥ + ∥w̃[t]∥ + ∥w̃x[t]∥

≤ (Ξ (T ∗))−1
(

∥ŵ[0]∥ + (C2/
√
2 + 1)(M + 1)∥w̃[0]∥

+ (C2/
√
2 + 1)∥w̃x[0]∥

)
e−σ t .

(73)

ith the aid of Cauchy–Schwarz inequality and the transforma-
ions (5), (9), (11), and (17), we can show that
û[t]∥ + ∥ũ[t]∥ + ∥ũx[t]∥

≤
Ω1Ω2

Ξ (T ∗)

(
∥û[0]∥ + ∥ũ[0]∥ + ∥ũx[0]∥

)
e−σ t ,

(74)

where

Ω1 = max
{
L̃, P̃ +

λ
+

√∫ 1 ∫ 1

P2
x (x, y)dydx, 1

}
> 0, (75)
2ε 0 x

7

Fig. 2. Event-triggered observer-based closed-loop system.

Ω2 = max
{
K̃ , (C2/

√
2 + 1)

(
(M + 1)Q̃ +

λ

2ε

+

√∫ 1

0

∫ 1

x
Q 2
x (x, y)dydx

)
, C2/

√
2 + 1

}
> 0,

(76)

ith L̃, P̃, Q̃ , and K̃ defined in (43), (58)–(60), respectively. ■

emark 4. Following from (71), the maximum upper diameter
∗ > 0 of the sampling schedule should satisfy the inequalities
1(T ∗) > 0 and γ2(T ∗) > 0 where γ1(·) and γ2(·) are given by (69)
nd (70), respectively. The solution space for the maximum upper
iameter is conservative because it is obtained using small-gain
rguments presented in the proof of Theorem 1. However, it can
e used to understand the qualitative dependence of the max-
mum upper diameter of the sampling schedule on the control
ernel K and the system parameters.

. Observer-based event-triggered boundary control

Now we present the observer-based event-triggered boundary
ontrol approach considered in this work. The closed-loop system
onsisting of the plant, the observer-based controller, and the
vent trigger is depicted in Fig. 2. The event-triggering condition
nvolves the square of the input holding error d(t) and a dynamic
ariable m(t) that depends on the information of the systems (24)
nd (25).

efinition 3. Let η, γ , ρ, β1, β2, β3 > 0. The observer-based
vent-triggered boundary control strategy consists of two com-
onents.

(1) (The event-trigger) The set of event times I = {t0, t1, t2, . . .}
with t0 = 0 forms an increasing sequence via the following
rules:

• if {t ∈ R+|t > tj ∧ d2(t) > −γm(t)} = ∅ then the set
of the times of the events is {t0, . . . , tj}.

• if {t ∈ R+|t > tj∧d2(t) > −γm(t)} ̸= ∅ then the next
event time is given by:

tj+1 = inf{t ∈ R+|t > tj ∧ d2(t) > −γm(t)} (77)

where d(t) is given by

d(t) =

∫ 1

0
k(y)

(
û(y, tj) − û(y, t)

)
dy, (78)

for all t ∈ [tj, tj+1) with k(y) defined in (20), and m(t)
satisfies the ODE

ṁ(t) = − ηm(t) + ρd2(t) − β1∥ŵ[t]∥2

− β2|ŵ(1, t)|2 − β3|w̃(1, t)|2,
(79)

for all t ∈ (tj, tj+1) with m(t0) = m(0) < 0 and
− +
m(tj ) = m(tj) = m(tj ).
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(2) (The control action) The output boundary feedback control
law

Uj =

∫ 1

0
k(y)û(y, tj)dy, (80)

for all t ∈ [tj, tj+1), j ∈ N.

Proposition 4 allows us to define the solution of the closed-
loop system under the observer-based event-triggered boundary
control (77)–(80) in the interval [0, F ), where F = sup(I).

Lemma 4. Under the definition of the observer-based event-triggered
boundary control (77)–(80), it holds that d2(t) ≤ −γm(t) and
m(t) < 0, for t ∈ [0, F ) where F = sup(I).

Proof. The proof is very similar to that of Lemma 1 in Rathnayake
et al. (2021) and hence omitted. ■

Lemma 5. For d(t) given by (78), it holds that

ḋ2(t) ≤ ρ1d2(t) + α1∥ŵ[t]∥2
+ α2|ŵ(1, t)|2 + α3|w̃(1, t)|2, (81)

for all t ∈ (tj, tj+1),∈ N, where

ρ1 = 6ε2k2(1), (82)

α1 = 3L̃2
∫ 1

0

(
εk′′(y) + εk(1)k(y) + λk(y)

)2dy
+ 6

(
εqk(1) + εk′(1)

)2 ∫ 1

0
L2(1, y)dy, (83)

α2 = 6
(
εqk(1) + εk′(1)

)2
, (84)

α3 = 6
(λk(1)

2
+

∫ 1

0
k(y)p1(y)dy

)2
. (85)

ith k(y), L̃, L given by (20), (43), (18), respectively.

roof. The proof is very similar to that of Lemma 2 in Rathnayake
t al. (2021) and hence omitted. ■

heorem 2. Under the observer-based event-triggered boundary
ontrol in Definition 3, with β1, β2, β3 chosen as

1 =
α1

γ (1 − ϑ)
, β2 =

α2

γ (1 − ϑ)
, β3 =

α3

γ (1 − ϑ)
, (86)

here α1, α2, α3 given by (83)–(85) and ϑ ∈ (0, 1), there exists a
inimal dwell-time τ > 0 between two triggering times, i.e., there
xists a constant τ > 0 such that tj+1− tj ≥ τ , for all j ∈ N, which is
ndependent of the initial conditions and only depends on the system
nd control parameters.

roof. Let us define

(t) :=
d2(t) + γ (1 − ϑ)m(t)

−γϑm(t)
. (87)

sing Lemma 2, a certain estimate for ψ(t) can be obtained as
in the proof of Theorem 1 in Rathnayake et al. (2021). Using this
estimate, one can easily prove Theorem 2. ■

Theorem 3. Let η, γ > 0 be free design parameters, ϑ ∈ (0, 1), and
g(x) and r be given by (15) and (16), respectively, while β1, β2, β3
are chosen according to (86). Further, subject to Assumption 1, let
us choose parameters B, κ1, κ2, κ3 > 0 such that

B
(
εmin

{
r,

1
2

}
−

ε

2κ1
−

λ

4κ2
−

∥g∥
2

κ3

)
− 2β1 − β2 > 0, (88)

nd the design parameter ρ as

=
εκ1B

. (89)

2 y

8

Fig. 3. The functions γ1(T ) and γ2(T ) given by (69) and (70) with N = 9,
σ = 0.0266, and C1 = 0.5302 in sampled-data control. A sampling diameter T ∗

as to be selected such that γ1(T ∗) > 0 and γ2(T ∗) > 0 to guarantee exponential
tability.

hen, the closed-loop system which consists of the plant (1a), (1b),
21) and the observer (2a), (2b), (22) with the event-triggered
oundary controller (77)–(80) has a unique solution and globally
xponentially converges to zero, i.e., ∥u[t]∥ + ∥û[t]∥ → 0 as
→ ∞.

roof. The proof is very similar to that of Theorem 2 in Rath-
ayake et al. (2021) and hence omitted. Let us only provide the
yapunov function used: V =

A
2∥w̃2

[t]∥2
+

B
2∥ŵ

2
[t]∥2

− m(t),
here ŵ and w̃ are the systems described by (24) and (25), re-
pectively, and A > 0 is chosen such that A >
λκ2B+2κ3B+4β3

εq . ■

5. Numerical simulations

We consider a reaction–diffusion PDE with ε = 1; λ = 10; q =

.1 and the initial conditions u[0] = 10x2(x − 1)2 and û[0] =

5x2(x−1)2 +15x3(x−1)3. For numerical simulations, both plant
nd observer states are discretized with a uniform step size of
= 0.0062 for the space variable. The discretization with respect

o time was done using the implicit Euler scheme with step size
t = 0.001 s.
First, we look at the sampling diameter for the sampled-

ata control implementation of the considered reaction–diffusion
ystem. The functions γ1(T ) and γ2(T ) with respect to T , given by
69) and (70), respectively, are shown in Fig. 3. We have used

= 9, σ = 0.0266, and C1 = 0.5302 in γ1(T ) and γ2(T ). As a
ampling diameter T ∗ should be chosen such that γ1(T ∗) > 0 and
2(T ∗) > 0 (see (71)), the maximum possible sampling diameter
s around 8 × 10−4 s, which is very small.

The parameters for the event-trigger mechanism are chosen
s follows: m(0) = −0.5, γ = 105, η = 1 or 100 and ϑ = 0.1.
e can compute using (83)–(85) that α1 = 1.3511 × 103

;α2 =

.9642 × 102
;α3 = 1.1956 × 104. Therefore, from (86), we can

btain β1 = 0.015;β2 = 0.0022;β3 = 0.1328. Finding that
g∥

2
= 3.0042 × 104, let us choose κ1 = 11; κ2 = 104

; κ3 = 108

nd B = 0.6440 to satisfy (88). Then, from (89), we can obtain
= 3.54.
Fig. 4(a) shows the response of the pant under event-triggered

ontrol with η = 1 and Fig. 4(b) shows the resulting ∥u[t]∥,
û[t]∥, and ∥ũ[t]∥. The evolution of the control inputs when η =

and η = 100 is presented in Fig. 5 along with the corresponding
ontinuous-time control input. It can be observed that η = 100

ields faster sampling than η = 1.
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Fig. 4. Results for the event-triggered closed-loop system with ε = 1, λ =

0, q = 5.1,m(0) = −0.5, η = 1, u[0] = 10x2(x − 1)2 and û[0] = 15x2(x −

)2 + 15x3(x − 1)3 (a) u(x, t). (b) ∥u[t]∥ and ∥ũ[t]∥.

Fig. 5. Comparison of ETC (event-triggered control) input for different η: η =

1 and η = 100, for the same system considered in Fig. 4. The corresponding
continuous-time control (CTC) input is also provided for reference.

6. Conclusion

This paper has proposed sampled-data and event-triggered
boundary control strategies for a class of reaction–diffusion sys-
tems with collocated sensing and Robin actuation. For sampled-
data control, it has been shown that the continuous-time output-
feedback backstepping boundary control applied in a sample-
and-hold fashion guarantees global closed-loop exponential sta-
bility, provided that the sampling period is sufficiently small.
Robustness with respect to perturbations of the sampling sched-
ule is guaranteed. For the event-triggered implementation of the
continuous-time control, a dynamic triggering condition has been
used in order to determine when the control value needs to be
updated. Under the event-triggered control approach, the exis-
tence of a minimal-dwell time between two updates independent
of initial conditions has been proved. Further, the global exponen-
tial convergence of the closed-loop system to the equilibrium has
been established.
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